Project description:BackgroundMoellerella wisconsensis, a member of the family of Enterobacteriaceae, although isolated widely in nature, rarely causes infections in humans. Herein, we report a case of isolation of M. wisconsensis from pigtail end culture, urine culture and blood culture in a 76-year-old patient.ObjectiveTo systematically address all the relevant information regarding M. wisconsensis through literature.MethodsWe searched PubMed and Scopus databases up to January 2022 and performed a qualitative synthesis of published articles reporting infection from M. wisconsensis in humans.ResultsWe identified 25 records on PubMed and 43 additional records on Scopus. After removing duplicates, we examined in detail 15 articles. Ten studies with a total of 17 cases were included in our systematic review. Nine studies described isolated case reports, while 1 study described 8 cases. The origin of the infection was the alimentary tract in 9 cases, gallbladder in 4 cases, peritoneal cavity in 2 cases, respiratory tract in 1 case and hemodialysis catheter insertion site in 1 case. In 3 of the aforementioned cases M. wisconsensis was also isolated in blood cultures.ConclusionPhysicians should be aware that M. wisconsensis can be present in multiple clinical specimens and that the antibiotic resistance profile of the isolates may pose significant challenges.
Project description:IntroductionMeat can be a vehicle for food-borne transmission of antimicrobial resistant bacteria and antimicrobial resistance genes. The occurrence of extended-spectrum beta-lactamase (ESBL) producing Enterobacterales has been observed in meat from livestock production but has not been well studied in meat from wild game.AimWe aimed to investigate, particularly in central Europe, to what extent ESBL-producing Enterobacterales may be present in wild game meat.MethodsA total of 111 samples of different types of game meat supplied by butchers, hunters, retail stores and a large game-processing establishment in Europe were screened for ESBL-producing Enterobacterales using a selective culture medium. Isolates were genotypically and phenotypically characterised.ResultsThirty-nine samples (35% of the total) yielded ESBL-producing Enterobacterales, with most (35/39) supplied by the game-processing establishment. Isolates included 32 Moellerella wisconsensis, 18 Escherichia coli and one Escherichia marmotae. PCR screening identified bla CTX-M-1 (n = 31), bla CTX-M-32 (n = 8), bla CTX-M-65 (n = 4), bla CTX-M-15 (n = 3), bla CTX-M-8 (n = 1), bla CTX-M-14 (n = 1), bla CTX-M-55 (n = 1), and bla SHV-12 (n = 2). Most E. coli belonged to phylogenetic group A (n = 7) or B1 (n = 9), but several isolates belonged to extraintestinal pathogenic E. coli (ExPEC) sequence types (ST)58 (n = 4), ST68 (n = 1) and ST540 (n = 1). Whole genome sequencing of six selected isolates localised bla CTX-M-1 on megaplasmids in four M. wisconsensis and bla CTX-M-32 on IncN_1 plasmids in one M. wisconsensis and one E. marmotae. Forty-eight isolates (94%) exhibited a multidrug-resistance phenotype.ConclusionWe found a high occurrence of ESBL-producing Enterobacterales in wild game meat, suggesting wildlife habitat pollution and possible microbial contamination events occurring during skinning or cutting carcasses.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.