Project description:The study critically evaluate the results of 16S targeted amplicon sequencing performed on the total DNA collected from healthy donors’ blood samples in the light of specific negative controls.
2024-03-01 | GSE254843 | GEO
Project description:Metagenomic Analysis of Marine Sediment Sample Collected from Shingle Island, Ramanathapuram, Tamil Nadu, India
| PRJNA879296 | ENA
Project description:Metagenomic Analysis of Marine Sediment Sample Collected from Kurusadai Island, Ramanathapuram, Tamil Nadu, India
| PRJNA879297 | ENA
Project description:Metagenomic Analysis of Sediment Sample Collected from Salt Pan from Pathanendal, Ramanathapuram, Tamil Nadu, India
Project description:Comparison of probe-target dissociations of probe Eub338 and Gam42a with native RNA of P. putida, in vitro transcribed 16s rRNA of P. putida, in vitro transcribed 16S rRNA of a 2,4,6-trinitrotoluene contaminated soil and an uncontaminated soil sample. Functional ANOVA revealed no significant differences in the dissociation curves of probe Eub338 when hybridised to the different samples. On the opposite, the dissociation curve of probe Gam42a with native RNA of P. putida was significantly different than the dissociation curves obtained with in vitro transcribed 16S rRNA samples. Keywords: Microbial diversity, thermal dissociation analysis, CodeLink microarray
Project description:Cover cropping is an effective method to protect agricultural soils from erosion, promote nutrient and moisture retention, encourage beneficial microbial activity, and maintain soil structure. Reusing winter cover crop root channels with the maize roots during the summer allows the cash crop to extract resources from farther niches in the soil horizon. In this study, we investigate how reusing winter cover crop root channels to grow maize (Zea mays L.) affects the composition and function of the bacterial communities in the rhizosphere using 16S rRNA gene amplicon sequencing and metaproteomics. We discovered that the bacterial community significantly differed among cover crop variations, soil profile depths, and maize growth stages. Re-usage of the root channels increased bacterial abundance, and it further increases as we elevate the complexity from monocultures to mixtures. Upon mixing legumes with brassicas and grasses, the overall expression of several steps of the carbon cycle (C) and the nitrogen cycle (N) improved. The deeper root channels of legumes and brassicas compared to grasses correlated with higher bacterial 16S rRNA gene copy numbers and community roles in the respective variations in the subsoil regimes due to the increased availability of root exudates secreted by maize roots. In conclusion, root channel re-use (monocultures and mixtures) improved the expression of metabolic pathways of the important C and N cycles, and the bacterial communities, which is beneficial to the soil rhizosphere as well as to the growing crops.