Project description:Poorly understood microorganisms "short-circuit" the nitrogen cycle via the dissimilatory nitrate reduction to ammonium to retain the element in agricultural lands and stimulate crop productivity. The prevalence of Geobacterales closely related to Trichlorobacter lovleyi in nitrate ammonification hotspots motivated us to investigate adaptive responses contributing to ammonification rates in the laboratory type strain T. lovleyi SZ. Here we describe the identification of tightly regulated pathways for efficient nitrate foraging and respiration with acetate, an important intermediate of organic matter degradation that Geobacterales efficiently assimilate and oxidize. Challenging the established dogma that high carbon/nitrate ratios stimulate the reduction of nitrate to ammonium, T. lovleyi doubled rapidly across a wide range of ratios provided nitrate concentrations were low enough to prevent the accumulation of the toxic nitrite intermediate. Yet, excess electrons during hydrogenotrophic growth alleviated nitrite toxicity and stimulated the reduction of nitrate to ammonium even under conditions of severe acetate limitation. These findings underscore the importance of nitrite toxicity in the ammonification of nitrate by Geobacterales and provide much needed mechanistic understanding of microbial adaptations contributing to soil nitrogen conservation. This information is critical to enhance the predictive value of genomic-based traits in environmental surveys and to guide strategies for sustainable management of nitrogen fertilization as well as mitigation of green-house emissions and agrochemical leaching from agricultural lands.
Project description:Nitrite-oxidizing bacteria are vital players in the global nitrogen cycle that convert nitrite to nitrate during the 2nd step of nitrification. Within this functional guild, the genus Nitrospira is among the most widespread and phylogenetically and physiologically diverse nitrite oxidizers and its members drive nitrite oxidation in many natural and biotechnological ecosystems. Despite their ecological and biotechnological importance, our understanding of Nitrospira’s energy metabolism is still limited. The main bottleneck for a detailed biochemical characterization of Nitrospira is biomass production, since they are slow-growing organisms and fastidious to culture. In this study, we cultured Nitrospira moscoviensis in a continuous stirred tank reactor system (CSTR) allowing constant biomass harvesting. Additionally, this cultivation setup enabled accurate control of physicochemical parameters and thus avoided fluctuating levels of nitrite and accumulation of nitrate. We performed transcriptome analysis and confirmed constant gene expression profiles in the chemostat culture over a period of two weeks. The transcriptomic data supports the predicted core metabolism of N. moscoviensis, including the reductive TCA cycle as a CO2 fixation pathway, the novel bd-like oxidase as terminal oxidase and the octaheme nitrite reductase involved in nitrogen assimilation. Additionally, the expression of multiple copies of respiratory complexes suggests functional differentiation of these copies within the respiratory chain. Transcriptome analysis also suggests a soluble and a membrane-bound gamma subunit as part of the nitrite oxidoreductase (NXR), the enzyme catalyzing nitrite oxidation. Overall, the transcriptome data provided novel insights into the metabolism of Nitrospira supporting the genome-based prediction of key pathways. Moreover, the application of a CSTR to cultivate Nitrospira is an important foundation for future proteomic and biochemical characterizations, which are crucial for a better understanding of canonical and complete nitrifying microorganisms.
Project description:Macrobrachium nipponense is one of the commonest species threatened by ambient superfluous nitrite. The mechanism of nitrite stress at the molecular level was studied using de novo RNA-Seq to explore the molecular pathways in M. nipponense exposed to the acute nitrite stress (26.05 mg/L nitrite-N) for 24h and the chronic nitrite stress (6.58 mg/L nitrite-N) for 21d. A total of 175.13 million reads were obtained and assembled into 58,871 unigenes with an average length of 1,028.7 bp and N50 of 1,294bp. 2,824 and 2,610 unigenes in the acute and chronic nitrite stress were significantly differentially expressed respectively. Based on the change in GO analysis and KEGG pathway analysis, pathways both in the acute and chronic nitrite stress were glycosphingolipid biosynthesis - ganglio series, alanine aspartate and glutamate metabolism, biotin metabolism and amino sugar and nucleotide sugar metabolism which revealed the commonly functional pathways in acute and chronic nitrite stress. The markedly altered pathways were divided into four sections of immunity, metabolism, cell and others. Immunity section contained the most pathways among the classifications as phagosome, folate biosynthesis, glycerolipid metabolism, glycine, serine and threonine metabolism, selenoamino acid metabolism, cysteine and methionine metabolism, amino sugar and nucleotide sugar metabolism and taurine and hypotaurine metabolism in the acute nitrite stress and lysosome, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, glycosaminoglycan degradation and amino sugar and nucleotide sugar metabolism in the chronic nitrite stress. This is the first report of whole molecular responses of M. nipponense under acute and chronic nitrite stress through de novo transcriptome sequencing. The findings of this study will further promote the understanding of the underlying molecular mechanisms of the nitrite stress for crustacean species.
Project description:Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.
2019-03-15 | PXD013103 | Pride
Project description:Microbial composition of spoiled industrial-scale Sichuan paocai and characteristics of the responsible microorganisms for paocai spoilage
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions. 36 dsrAB clones for chip evaluation, 33 hybridizations of labeled dsrAB RNA from environmental peatsoil samples