Project description:The study aims to identify and analyze the miRNAs in Bemisia tabaci that feed on Nicotiana tabacum cv. NC89 plants. This allows for the investigation of insect miRNAs that play important physiological roles in Bemisia tabaci. Additionally, it enables the analysis and identification of miRNAs that are transferred from Nicotiana tabacum to Bemisia tabaci. These data can further help us understand the role of miRNAs in the interaction between Bemisia tabaci and its host plants.
2025-03-29 | GSE292778 | GEO
Project description:Microbial diversity of whitefly Bemisia tabaci
Project description:The whitefly Bemisa tabaci is a species complex with global distribution and extensive genetic diversity. In this species complex, Middle East-Asia Minor 1 (MEAM1, previously referred to as the âB biotypeâ) species has been spreading rapidly in tropical and subtropical regions. we analyzed the transcriptional responses of the invasive MEAM1 and the indigenous Asia II 3 species of B. tabaci complex during host plant shift (from cotton to tobacco) using the Illumina sequencing technology.The different gene expression pattern of energy and carbonhydrate metabolism and detoxification metabolism between MEAM1 and Asia II 3 were the main reasons of their different capacity of adapation. The global transcriptional difference between the invasive whitefly Bemisia tabaci species (MEAM1) and the indigenous whitefly species (Asia II 3) on cotton and tobacco were analyzed using the Illumina sequencing technology.
Project description:We investigated the transcriptional response to thiamethoxam in the Bemisia tabaci using Illumina sequencing technology. A total of 1,338 genes were differently expressed in the thiamethoxam-resistant whiteflies.
Project description:To investigated the stage-specific gene expression response to thiamethoxam in the Bemisia tabaci, we have designed the Agilent eArray platform to identify stage-regulated gene expression towards thiamethoxam exposure.
Project description:The saliva from Bemisia tabaci (MED biotype) adults was collected using an artificial feeding system and analyzed using an LC-MS/MS proteomics analysis.
Project description:To investigated the stage-specific gene expression response to thiamethoxam in the Bemisia tabaci, we have designed the Agilent eArray platform to identify stage-regulated gene expression towards thiamethoxam exposure. All the B biotype Bemisia tabaci were maintained on cabbage. Thiamethoxam susceptible (TH-S) was cultured without exposure to any chemical insecticides, Thiamethoxam resistance (TH-R) strain exhibited >70-fold resistance to thiamethoxam in comparision to the TH-S strain. Eggs were incubated in 24hours collected as one sample. The fourth nymphs were collected as another sample. The one-day-old unmated adult females were collected as the third samples. Both of the samples were collected from the TH-R, TH-S strains, respectively
Project description:Begomoviruses, the largest, most damaging and emerging group of plant viruses in the world, infect hundreds of plant species and new virus species of the group are discovered each year. They are transmitted by species of the whitefly Bemisia tabaci. Tomato yellow leaf curl virus (TYLCV) is one of the most devastating begomoviruses worldwide and causes major losses in tomato crops as well as in many more agriculturally important plant species. Different B. tabaci populations vary in their virus transmission abilities; the causes for these differences are attributed among others to genetic diversity of vector populations, as well as to differences in the bacterial symbiont flora of the insects. Here, we performed discovery proteomic analyses in nine whiteflies populations from both B (MEAM1) and Q (MED) species with different TYLCV transmission abilities. The results provide the first comprehensive list of candidate insect and bacterial symbiont (mainly Rickettsia) proteins associated with virus transmission. Efficient vector populations from two different B. tabaci species over-expressed or downregulated expression of proteins belonging to two different molecular pathways.