Project description:The outcomes of this project are to identify bioactive marine natural products from Irish marine life. This specific dataset contains LC-MS/MS spectra from tissue of the marine sponge Haliclona fistulosa. Files are part of the Metabolights dataset MTBLS874.
Project description:Little is known about the pharmacological activity of Monarda fistulosa L. essential oils. To address this issue, we isolated essential oils from the flowers and leaves of M. fistulosa and analyzed their chemical composition. We also analyzed the pharmacological effects of M. fistulosa essential oils on transient receptor potential (TRP) channel activity, as these channels are known targets of various essential oil constituents. Flower (MEOFl) and leaf (MEOLv) essential oils were comprised mainly of monoterpenes (43.1% and 21.1%) and oxygenated monoterpenes (54.8% and 77.7%), respectively, with a high abundance of monoterpene hydrocarbons, including p-cymene, γ-terpinene, α-terpinene, and α-thujene. Major oxygenated monoterpenes of MEOFl and MEOLv included carvacrol and thymol. Both MEOFl and MEOLv stimulated a transient increase in intracellular free Ca2+ concentration ([Ca2+]i) in TRPA1 but not in TRPV1 or TRPV4-transfected cells, with MEOLv being much more effective than MEOFl. Furthermore, the pure monoterpenes carvacrol, thymol, and β-myrcene activated TRPA1 but not the TRPV1 or TRPV4 channels, suggesting that these compounds represented the TRPA1-activating components of M. fistulosa essential oils. The transient increase in [Ca2+]i induced by MEOFl/MEOLv, carvacrol, β-myrcene, and thymol in TRPA1-transfected cells was blocked by a selective TRPA1 antagonist, HC-030031. Although carvacrol and thymol have been reported previously to activate the TRPA1 channels, this is the first report to show that β-myrcene is also a TRPA1 channel agonist. Finally, molecular modeling studies showed a substantial similarity between the docking poses of carvacrol, thymol, and β-myrcene in the binding site of human TRPA1. Thus, our results provide a cellular and molecular basis to explain at least part of the therapeutic properties of these essential oils, laying the foundation for prospective pharmacological studies involving TRP ion channels.
Project description:Monarda fistulosa L. above-ground organs, collected at three phases of plant phenology, were investigated as potential raw materials for application in the food industry. They were evaluated regarding essential oil (EO) content, composition, and antimicrobial activity, as well as characteristics of phenolic fractions and antioxidant properties, which may determine health benefits and potential use in food preservation. The dominant constituent of leaf EO was carvacrol. In the inflorescence EO carvacrol content was especially high at the full flowering phase (45.12%), while during the fruit setting phase its content was lower than that of p-cymene (39.75%) and thymoquinone (25.04%). In the agar dilution test, leaf and inflorescence EOs inhibited the growth of the six tested microorganisms at the concentration range of 0.156-0.625 µL/mL. Leaves collected at the vegetative phase of plant growth were characterised by the highest content of rosmarinic acid and didymin. Inflorescences harvested during the flowering of plants were rich in linarin. Flavonoid content was highly correlated with antioxidant activity of extracts. Due to these properties, M. fistulosa extracts and essential oils could be used in the food industry as natural preservatives or antioxidants, thereby contributing to the development of safer and more sustainable food products.
Project description:Background and aimsRhamphicarpa fistulosa (Hochst.) Benth. is an annual facultative parasitic plant adapted to hydromorphic soils. In sub-Saharan Africa it causes high crop losses as a weed in rainfed lowland rice (Oryza sativa L.). Fertilizers are often proposed as a control measure against hemiparasitic weeds, but an understanding of the nutrient effects on R. fistulosa is currently still elusive.MethodsIn two greenhouse pot experiments, conducted in 2016 in the Netherlands and in 2019 in the UK, host plants (O. sativa, cv IR64) and parasitic plants (R. fistulosa) were grown alone or combined and were subjected to different levels of nutrient availability. Biomass measurements were used to assess whether and how effects of nutrient availability are expressed in the host and parasite.Key resultsCompared with parasite-free host plants, the biomass of parasite-infested plants was severely reduced, and nutrient effects on host plant biomass were less pronounced. Conversely, increased nutrient availability did not have an effect on parasitic plants when grown alone, but when grown with a host the parasitic plant biomass increased proportionally. Grown together, the combined biomass of host plant and parasite was substantially lower than that of the host plant grown alone. The ratio of biomass between host plant and parasite was unaffected by nutrient availability.ConclusionsFertilization benefits to rice plants are severely reduced but not completely nullified by R. fistulosa infection. The benefits to production and reproduction accrued by the parasite from increased nutrient availability are restricted to conditions in the presence of a host plant. Host presence and nutrient effects are thus observed to be synergetic; R. fistulosa plants parasitizing a suitable host respond strongly to increasing levels of nutrients. This is associated with an increased root biomass of the parasitic plant itself, but is more likely to result from exploitation of the nutrient uptake capacity of the host plant it parasitizes.