Project description:The use of -omics technologies allows for the characterization of snake venom composition at a fast rate and at high levels of detail. In the present study, we investigated the protein content of Red-headed Krait (Bungarus flaviceps) venom. This analysis revealed a high diversity of snake venom protein families, as evidenced by high-throughput mass spectrometric analysis. We found all six venom protein families previously reported in a transcriptome study of the venom gland of B. flaviceps, including phospholipases A₂ (PLA₂s), Kunitz-type serine proteinase inhibitors (KSPIs), three-finger toxins (3FTxs), cysteine-rich secretory proteins (CRISPs), snaclecs, and natriuretic peptides. A combined approach of automated database searches and de novo sequencing of tandem mass spectra, followed by sequence similarity searches, revealed the presence of 12 additional toxin families. De novo sequencing alone was able to identify 58 additional peptides, and this approach contributed significantly to the comprehensive description of the venom. Abundant protein families comprise 3FTxs (22.3%), KSPIs (19%), acetylcholinesterases (12.6%), PLA₂s (11.9%), venom endothelial growth factors (VEGFs, 8.4%), nucleotidases (4.3%), and C-type lectin-like proteins (snaclecs, 3.3%); an additional 11 toxin families are present at significantly lower concentrations, including complement depleting factors, a family not previously detected in Bungarus venoms. The utility of a multifaceted approach toward unraveling the proteome of snake venoms, employed here, allowed detection of even minor venom components. This more in-depth knowledge of the composition of B. flaviceps venom facilitates a better understanding of snake venom molecular evolution, in turn contributing to more effective treatment of krait bites.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:BACKGROUND: The Red-headed krait (Bungarus flaviceps, Squamata: Serpentes: Elapidae) is a medically important venomous snake that inhabits South-East Asia. Although the venoms of most species of the snake genus Bungarus have been well characterized, a detailed compositional analysis of B. flaviceps is currently lacking. RESULTS: Here, we have sequenced 845 expressed sequence tags (ESTs) from the venom gland of a B. flaviceps. Of the transcripts, 74.8% were putative toxins; 20.6% were cellular; and 4.6% were unknown. The main venom protein families identified were three-finger toxins (3FTxs), Kunitz-type serine protease inhibitors (including chain B of beta-bungarotoxin), phospholipase A2 (including chain A of beta-bungarotoxin), natriuretic peptide (NP), CRISPs, and C-type lectin. CONCLUSION: The 3FTxs were found to be the major component of the venom (39%). We found eight groups of unique 3FTxs and most of them were different from the well-characterized 3FTxs. We found three groups of Kunitz-type serine protease inhibitors (SPIs); one group was comparable to the classical SPIs and the other two groups to chain B of beta-bungarotoxins (with or without the extra cysteine) based on sequence identity. The latter group may be functional equivalents of dendrotoxins in Bungarus venoms. The natriuretic peptide (NP) found is the first NP for any Asian elapid, and distantly related to Australian elapid NPs. Our study identifies several unique toxins in B. flaviceps venom, which may help in understanding the evolution of venom toxins and the pathophysiological symptoms induced after envenomation.
Project description:Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).