Project description:Many waterbirds have fully (totipalmate) or partially webbed (palmate) feet that are used for locomotion in aquatic environments.If webbed feet and wings both contribute to efficient diving, we predicted a positive association between the area of webbed feet and the size of the frontal locomotor apparatus (wing area, heart mass, and breast muscle, after adjusting for any partial effects of body size). We predicted that individuals able to acquire more and better quality food due to larger webbed feet should have larger livers with higher concentrations of fat-soluble antioxidants such as vitamin E, and invest more in immune function as reflected by the relative size of the uropygial gland than individuals with small webbed feet.Here, we examine if the area of webbed feet is correlated with locomotion, diet, and body condition in a sea-duck, the eider (Somateria mollissima). We analyzed an extensive database of 233 eiders shot in Danish waters and at Åland, Finland during winter and early spring.Eiders with larger webbed feet had a larger locomotor apparatus, but did not have larger body size, they had larger uropygial glands that waterproof the plumage, they had larger beak volume and larger gizzards, and they had higher body condition.These findings imply that eiders with large webbed feet benefitted in terms of locomotion, feeding, and reproduction.
Project description:The Baltic Sea population of the common eider (Somateria mollissima) has declined dramatically during the last two decades. Recently, widespread episodic thiamine (vitamin B1) deficiency has been demonstrated in feral birds and suggested to contribute significantly to declining populations. Here we show that the decline of the common eider population in the Baltic Sea is paralleled by high mortality of the pulli a few days after hatch, owing to thiamine deficiency and probably also thereby associated abnormal behaviour resulting in high gull predation. An experiment with artificially incubated common eider eggs collected in the field revealed that thiamine treatment of pulli had a therapeutic effect on the thiamine status of the brain and prevented death. The mortality was 53% in untreated specimens, whereas it was only 7% in thiamine treated specimens. Inability to dive was also linked to brain damage typical for thiamine deficiency. Our results demonstrate how thiamine deficiency causes a range of symptoms in the common eider pulli, as well as massive die-offs a few days after hatch, which probably are the major explanation of the recent dramatic population declines.