Project description:The complete mitochondrial genome of Urocissa erythroryncha is 16930 bp in length. It was predicted to contain 13 PCGs, 22 tRNA genes, and 2 rRNA genes, and a putative control region. All of the PCGs initiated with ATG, except for MT-COX1 which began with GTG and MT-ND3 began with ATA, while stopped by three types of stop codons. Phylogenetic analysis showed that Urocissa erythroryncha and the other species of Corvidae were monophyletic group in this study. And the monophyly of the genus Pyrrhocorax was strongly supported. Moreover, our results also support a sister-group relationship between Corvidae and Muscicapidae.
Project description:Taiwan Blue Magpie (Urocissa caerulea) is endemic to Taiwan and listed as threatened species protected by law. In this study, we first determined and described the complete mitochondrial genome of Taiwan Blue Magpie. The circle genome is 16,928 bp in length, and contains 13 protein coding, 22 tRNA, two rRNA genes, and one non-coding control region (CR). The overall base composition of the mitochondrial DNA is 30.99% for A, 24.69% for T, 30.07% for C, and 14.25% for G. The percentage of G + C content is 44.32%. This work provides fundamental molecular data which will be useful for evolution and phylogeny studies on Corvidae in the future.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:In the present study, the detection of a pantropic canine coronavirus (CCoV) strain in a dog with lethal diarrhoea is reported. RT-PCR and real-time RT-PCR assays were used for the detection, characterization and quantitation of CCoV. Sequence and phylogenetic analysis of the CCoV NA/09 revealed a high degree of sequence identity with the pantropic strain CB/05, indicating the presence of CB/05-like pantropic strains in Greece. The absence of the 38-nucleotide deletion in ORF3b, which is characteristic of CB/05, indicates the need to identify new genetic markers for pantropic variants of CCoV, probably in the spike-protein gene region.
Project description:Background: Plants are sessile and therefore have developed mechanisms to adapt to their environment, including the soil mineral nutrient composition. Ionomics is a developing functional genomics strategy designed to rapidly identify the genes and gene networks involved in regulating how plants acquire and accumulate these mineral nutrients from the soil. Here we report on the coupling of high-throughput elemental profiling of shoot tissue from various Arabidopsis accessions with DNA microarray-based bulk segregant analysis (BSA) and reverse genetics, for the rapid identification of genes from wild populations of Arabidopsis that are involved in regulating how plants acquire and accumulate Na+ from the soil. Methodology/Principal Findings: Elemental profiling of shoot tissue from 12 different Arabidopsis accessions revealed that Ts-1 and Tsu-1 accumulate higher shoot levels of Na+ than Col-0 and other accessions. We identify AtHKT1, known to encode a Na+ transporter, as being the causal locus driving elevated shoot Na+ in both Ts-1 and Tsu-1. Furthermore, we establish that a deletion in a tandem repeat sequence ~5 kb upstream of AtHKT1 is responsible for the reduced root expression of AtHKT1 observed in these accessions. Reciprocal grafting experiments establish that this loss of AtHKT1 expression in roots is responsible for elevated shoot Na+. Interestingly, and in contrast to the hkt1-1 null mutant, under NaCl stress conditions this novel AtHKT1 allele not only does not confer NaCl sensitivity, but co-segregates with elevated NaCl tolerance. We also present all our elemental profiling data in a new open access ionomics database, the Purdue Ionomics Information Management System (PiiMS; www.purdue.edu/dp/ionomics). Conclusions/Significance: Using DNA microarray-based genotyping has allowed us to rapidly identify AtHKT1 as the causal locus driving the natural variation in shoot Na+ accumulation we observed in Ts-1 and Tsu-1, two coastal populations of Arabidopsis. Such an approach overcomes the limitations imposed by a lack of established genetic markers in most Arabidopsis accessions, and opens up a vast and tractable source of natural variation for the identification of gene function not only in ionomics but also in many other biological processes. Keywords: genomics hybridization bulk segregant analysis