Project description:WES of CD14+ monocyte from one patient (patient A) and of iPS clones derived from this patient (clones A1, A2, A3, A4, A5 derived from patient A.
Project description:Immunoglobulin light-chain amyloidosis (AL) is a rare clonal plasma cell (PC) disorder that remains largely incurable. AL and multiple myeloma (MM) share the same cellular origin, but while knowledge about MM PC biology has improved significantly, the same does not apply for AL. Here, we undertook an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 22 newly-diagnosed AL patients. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and MGUS or MM patients. However, in contrast to MM, highly-purified FACSs-sorted clonal PCs in AL (n=9/22) show virtually normal transcriptomes with only 68 deregulated genes as compared to normal PCs, including a few tumor suppressor (CDH1, RCAN) and pro-apoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n=11/22) were genomically unstable with a median of 9 copy-number-abnormities (CNAs) per case; many of which similar to those found in MM. Whole-exome sequencing (WES) was performed in three AL patients and revealed a median of 10 non-recurrent mutations per case. Altogether, we showed that although clonal PCs in AL display phenotypic and CNA profiles similar to MM, their transcriptome is remarkably similar to that of normal PCs. First-ever WES revealed the lack of a unifying mutation in AL
2016-07-22 | GSE73041 | GEO
Project description:Charcot Marie Tooth Patient WES
| PRJNA962009 | ENA
Project description:WES of BOS-ASXL1 patient
| PRJNA660281 | ENA
Project description:WES on Alport symdrome patient
Project description:Germline RUNX1 mutations are found in familial platelet disorders with predisposition to acute myelogenous leukemia (FPD/AML). This very rare disease is characterized by thrombocytopenia, platelet dysfunction and a 35% lifetime risk of developing MDS/AML and in rare cases also T-ALL. Here, we focus on a case of a man with a familial history of RUNX1 R174Q mutation who developed at the age of 42 years an EGIL T2-ALL and two years after remission an AML-M0. To investigate whether initial and relapsed leukemic blasts originated from the same clone, we performed CGH array and WES on both blasts populations. In both T2-ALL and AML-M0 samples, CGH array revealed loss of 1p36.32-23 and 17q11.2 and nine other small deletions. Both AML-M0 and T2-ALL demonstrated clonal rearrangements of both TCR (V9-J1-1) and TCR (D2-J1 and D2-J3). 18 genes were found by WES to be mutated in the original clone at a frequency of more than 40%. Additional variants were identified only in T2-ALL or in AML-M0 evoking the existence of a common original clone. MiSeq technology performed on peripheral blood-derived CD34+ cells five years prior T2-ALL development revealed only missense TET2 P1962T mutation at a frequency of 1% suggesting that this mutation in association with germline RUNX1 R174Q mutation led to amplification of a hematopoietic clone susceptible to acquire other transforming alterations. Identification of clonal hematopoiesis with acquired mutations at low frequency in hematopoietic progenitors before leukemia development could clearly serve as a marker of pre-leukemic state and might be helpful in patient care.