Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:<p>Biological nitrogen fixation by free-living bacteria and rhizobial symbiosis with legumes plays a key role in sustainable crop production. Here, we study how different crop combinations influence the interaction between peanut plants and their rhizosphere microbiota via metabolite deposition and functional responses of free-living and symbiotic nitrogen-fixing bacteria. Based on a long-term (8 year) diversified cropping field experiment, we find that peanut co-cultured with maize and oilseed rape lead to specific changes in peanut rhizosphere metabolite profiles and bacterial functions and nodulation. Flavonoids and coumarins accumulate due to the activation of phenylpropanoid biosynthesis pathways in peanuts. These changes enhance the growth and nitrogen fixation activity of free-living bacterial isolates, and root nodulation by symbiotic Bradyrhizobium isolates. Peanut plant root metabolites interact with Bradyrhizobium isolates contributing to initiate nodulation. Our findings demonstrate that tailored intercropping could be used to improve soil nitrogen availability through changes in the rhizosphere microbiome and its functions.</p>
Project description:In 1976, a spontaneous mutant derived from Poncirus trifoliata (L.) Raf with short juvenile phase, namely, precocious trifoliate orange, was found in Yichang, Hubei province, China. Compared with 6 to 8 years of the wild-type trifoliate orange, almost all of the seedlings germinated from precocious trifoliate orange only have 1 to 2 years’ juvenile period, and 20% seedlings even flowered in the year after germination. Therefore, precocious trifoliate orange is an ideal material for studying the role of miRNAs involved in citrus juvenile and adult developmental stages. To characterize these miRNAs expressed at the juvenile and adult development stages of citrus, Affymetrix miRNA arrays were used to generate miRNA profiles of shoot meristems of trifoliate orange, the results revealed that some miRNAs were down-regulated expressed at adult stage compared with juvenile stage. Detailed comparison of the expression patterns of miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated.
Project description:Plant growth and development depends on the availability of nutrients and water resources in the soil. The increased frequencies of drought events over recent years have affected nutrient availability soil systems. Crops reutilising winter cover crop root channels allows access to resources from distal regions in the soil horizon. However, the availability of information regarding root channel reutilisation under drought, specifically bacterial community structures and functions is unknown. In this study, we observed the changes inflicted by drought on bacterial communities in maize (Zea mays L.) rhizospheres after reusing the winter cover crop root channels. The techniques of 16S rRNA (ribosomal ribonucleic acid) gene-based microbial profiling and metaproteomics were used to study the alterations in biochemical pathways of those communities under drought at three different locations (Hohenschulen, Karkendamm and Reinshof) comprising three different soli types (Luvisol, Podzol and Phaeozem) respectively. Besides the influence of soil properties, we noticed that under drought the relative abundances of Acidobacteriota, Actinomycetota, Planctomycetota, and Pseudomonadota increased, while Chloroflexota, Methylomirabilota, Patescibacterota, and Verrucomicrobiota decreased. At drought-prone soil types Luvisol and Podzol, aerobic communities Pseudomonadota and Verrucomicrobiota increased abundance of the glyoxylate cycle as a means of conserving carbon and energy for plausible survival measures. Higher abundance of catalase-glutathione peroxidase (CAT-PER) through the methionine cycle-transsulfuration pathway possibly alleviate reactive oxygen species (ROS) levels. Overall, bacterial communities in the reused cover crop root channels respond to drought by taking mitigative measures for survival.
Project description:Using sRNA-Seq to provide small RNA status in fruit ripening stages in sweet orange DNA methylation is an important epigenetic mark involved in many biological processes. The genome of the climacteric tomato fruit undergoes a global loss of DNA methylation due to active DNA demethylation during the ripening process. It is unclear whether the ripening of other fruits is also associated with global DNA demethylation. We characterized the single-base resolution DNA methylomes of sweet orange fruits. Compared to immature orange fruits, ripe orange fruits gained DNA methylation at over 30,000 genomic regions and lost DNA methylation at about 1,000 genomic regions, suggesting a global increase in DNA methylation during orange fruit ripening. This increase in DNA methylation was correlated with decreased expression of DNA demethylase genes. The application of a DNA methylation inhibitor interfered with ripening, indicating that the DNA hypermethylation is critical for the proper ripening of orange fruits. We found that ripening-associated DNA hypermethylation was associated with the repression of several hundred genes, such as photosynthesis genes, and with the activation of hundreds of genes including genes involved in ABA responses. Our results suggest important roles of DNA methylation in orange fruit ripening.