Project description:Plant roots are the primary site of perception and injury for saline-alkaline stress. The current knowledge of the saline-alkaline stress transcriptome is most focused on salt (NaCl) stress. Only a little alkaline (NaHCO3) stress transcriptome is limited to one time point after stress. Time-course analysis and comparative investigation on roots in the alkaline stress condition are needed to understand the gene response networks that are subject to alkaline tolerance. We used microarrays to detail the global programme of gene expression underlying NaHCO3 treatment and identified distinct classes of regulated genes during this process. Three week old Glycine soja seedling roots from 3cm root apex were harvested in two independent biological replicates after 0, 0.5, 1, 3, 6, 12 and 24h treatment with 50mmol/L NaHCO3 stress for RNA extraction and hybridization on Affymetrix microarrays. To minimize biological variance, roots from three plants originating from the same experiment, condition and cultivar was pooled.
Project description:We conducted a genome-wide transcriptomic analysis in soybean leaves and roots treated with zinc (Zn) deficiency using RNA sequencing (RNA-seq) technology. Two biological replicates of RNA-seq were included for Zn-sufficient leaves (ZSL), Zn-deficient leaves (ZDL), Zn-sufficient roots (ZSR), and Zn-deficient roots (ZDR). Therefore a total of eight libraries were constructed. Using a 2-fold change and a P-value ≤0.05 as the cut-off for selecting the differentially expressed transcripts, we globally identified Zn-deficiency responsive genes. At least 20 genes that are potentially involved Zn homeostasis were significantly changed by Zn deficiency, including 7 ZIP (ZRT, IRT-related protein) transporter genes, 3 nicotianamine synthase genes, and 7 metallothionein genes. At least 48 genes encoding likely Zn-binding proteins were found to be responsive to Zn deficiency in leaves or roots. Eighty-five transcription factor genes were significantly changed by Zn deficiency in leaves or roots, including 5 bZIP members and 10 Golden 2-like members. In addition, some other groups of genes which are possibly related to reactive oxygen species scavenging, calcium and hormone signaling, and protein phosphorylation and dephosphorylation also differentially expressed under Zn deficiency.
Project description:Background The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. Results In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~10 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. Conclusions We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress.
Project description:Background The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are characterized in Arabidopsis (Arabidopsis thaliana), and members of the family are being investigated for abiotic stress responses in rice (Oryza sativa), maize (Zea mays), poplar (Populus trichocarpa) and cucumber (Cucmis sativus). Findings in these species suggest HD-Zip genes as high priority candidates for crop improvement. Results In this study we have identified members of the HD-Zip gene family in soybean cv. 'Williams 82', and characterized their expression under dehydration and salt stress. Homology searches with BLASTP and Hidden Markov Model guided sequence alignments identified 101 HD-Zip genes in the soybean genome. Phylogeny reconstruction coupled with domain and gene structure analyses using soybean, Arabidopsis, rice, grape (Vitis vinifera), and Medicago truncatula homologues enabled placement of these sequences into four previously described subfamilies. Of the 101 HD-Zip genes identified in soybean, 88 exist as whole-genome duplication-derived gene pairs, indicating high retention of these genes following polyploidy in Glycine ~10 Mya. The HD-Zip genes exhibit ubiquitous expression patterns across 24 conditions that include 17 tissues of soybean. An RNA-Seq experiment performed to study differential gene expression at 0, 1, 6 and 12 hr soybean roots under dehydration and salt stress identified 20 differentially expressed (DE) genes. Several of these DE genes are orthologs of genes previously reported to play a role under abiotic stress, implying conservation of HD-Zip gene functions across species. Screening of HD-Zip promoters identified transcription factor binding sites that are overrepresented in the DE genes under both dehydration and salt stress, providing further support for the role of HD-Zip genes in abiotic stress responses. Conclusions We provide a thorough description of soybean HD-Zip genes, and identify potential candidates with probable roles in dehydration and salt stress. Expression profiles generated for all soybean genes, under dehydration and salt stress, at four time points, will serve as an important resource for the soybean research community, and will aid in understanding plant responses to abiotic stress. We sequenced mRNA from soybean cv. "Williams 82" root samples that includes three control samples (0 hr), and three biological replicates for each of the three time points 1, 6 and 12 hr under dehydration and salt stress
Project description:To identify key genes in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, the transcriptome profiling under salt stress was carried out. Main roots and lateral roots were collected from the mangrove plants at 0, 1, 3, 6, 12 and 24 h, 3 6 and 12 days after NaCl-treatment. Keywords: time course, stress response, root type comparison