Project description:The emergence of colistin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a significant threat to human health, and new treatment strategies are urgently required. Here we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in several polymyxin-resistant, ESBL-producing, carbapenem resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including a ‘next generation’ polymyxin derivative, FADDI-287. To gain additional insight into the potential mechanism of action of PBT2, we analyzed the transcriptome of K. pneumoniae and E. coli in the presence of sub-inhibitory concentrations of PBT2. Treatment with PBT2 was associated with multiple stress responses in both K. pneumoniae and E. coli. Significant changes in the transcription of transition metal ion homeostasis genes were observed in both strains.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
Project description:Background: It remains unclear how high-risk Escherichia coli lineages, like sequence type (ST) 131, initially adapt to carbapenem exposure in its progression to becoming carbapenem resistant. Methods: Carbapenem mutation frequency was measured in multiple subclades of extended-spectrum β-lactamase (ESBL) positive ST131 clinical isolates using a fluctuation assay followed by whole genome sequencing (WGS) characterization. Genomic, transcriptomic, and porin analyses of ST131 C2/H30Rx isolate, MB1860, under prolonged, increasing carbapenem exposure was performed using two distinct experimental evolutionary platforms to measure fast vs. slow adaptation. Results: All thirteen ESBL positive ST131 strains selected from a diverse (n=184) ST131 bacteremia cohort had detectable ertapenem (ETP) mutational frequencies with a statistically positive correlation between initial ESBL gene copy number and mutation frequency (r = 0.87, P<1e-5). WGS analysis of mutants showed initial response to ETP exposure resulted in significant increases in ESBL gene copy numbers or mutations in outer membrane porin (Omp) encoding genes in the absence of ESBL gene amplification with subclade specific adaptations. In both experimental evolutionary platforms, MB1860 responded to initial ETP exposure by increasing blaCTX-M-15 copy numbers via modular, insertion sequence 26 (IS26) mediated pseudocompound transposons (PCTns). Transposase activity driven by PCTn upregulation was a conserved expression signal in both experimental evolutionary platforms. Stable mutations in Omp encoding genes were detected only after prolonged increasing carbapenem exposure consistent with clinical observations. Conclusions: ESBL gene amplification is a conserved response to initial carbapenem exposure, especially within the high-risk ST131 C2 subclade. Targeting such amplification could assist with mitigating carbapenem resistance development.
Project description:This study aims to determine the epidemiology of Enterobacteriaceae resistant to antibiotics of last resort in pregnant women in labour at a tertiary hospital, Pretoria, South Africa. Rectal swabs shall be used to screen for colonisation with CRE and colistin-resistant Enterobacteriales in pregnant women during labour. Carbapenem and colistin-resistant Enterobacterales can cause the following infections: bacteraemia; nosocomial pneumonia; urinary tract infections, and intra-abdominal infections. Due to limited treatment options, infections caused by these multidrug-resistant organisms are associated with a mortality rate of 40-50%. Screening for colonisation of carbapenem-resistant Enterobacteriaceae (CRE) and colistin-resistant Enterobacteriaceae will help implement infection and prevention measures to limit the spread of these multidrug-resistant organisms.
Project description:Infections caused by carbapenem-resistant Acinetobacter baumannii (CRAb) are associated with high patient morbidity and mortality. The serious threat for human health imposed by CRAb was recently underscored by identification of close-to-untouchable carbapenem- and tetracycline-resistant isolates. Since outer membrane vesicles (OMVs) of Gram-negative bacteria may contribute to antimicrobial resistance, our present study was aimed at investigating OMVs produced by the first two carbapenem- and tetracycline-resistant CRAb isolates in Europe. These isolates, denoted CRAb1 and CRAb2 contain large, nearly identical plasmids that specify multiple resistances. Both isolates produce OMVs that were analyzed by differential light scattering, transmission electron microscopy and proteomics. By comparison with OMVs from the plasmid-free non-carbapenem-resistant A. baumannii isolate Ab1, which is an isogenic ancestor of the CRAb1 isolate, we show that plasmid carriage by the CRAb1 and CRAb2 isolates leads to an increased OMV size that is accompanied by increased diversity of the OMV proteome. Our analyses show that OMVs from CRAb1 and CRAb2 are major reservoirs of proteins involved in antimicrobial resistance, including the plasmid-encoded carbapenemases BlaNDM-1, and BlaOXA-97. We also show that these OMV-borne carbapenemases hydrolyze imipenem and protect otherwise carbapenem-sensitive A. baumannii and Escherichia coli isolates against this antibiotic. Altogether, our observations show that OMVs from highly drug-resistant CRAb confer tolerance against last-resort antibiotics to non-resistant bacterial pathogens.