Project description:BackgroundStenotaphrum secundatum is an important grass with a rich variety of accessions and great potential for development as an economically valuable crop. However, little is known about the genetic diversity of S. secundatum, limiting its application and development as a crop. Here, to provide a theoretical basis for further conservation, utilization, and classification of S. secundatum germplasm resources, we used phenotypic and molecular markers (single-nucleotide polymorphisms, SNPs; sequence-related amplified polymorphism, SRAP; inter-simple sequence repeat, ISSR) to analyze the genetic diversity of 49 S. secundatum accessions.ResultsBased on seven types of phenotypic data, the 49 S. secundatum accessions could be divided into three classes with great variation. We identified 1,280,873 SNPs in the 49 accessions, among which 66.22% were transition SNPs and 33.78% were transversion SNPs. Among these, C/T was the most common (19.12%) and G/C the least common (3.68%). Using 28 SRAP primers, 267 polymorphic bands were detected from the 273 bands amplified. In addition, 27 ISSR markers generated 527 amplification bands, all of which were polymorphic. Both marker types revealed a high level of genetic diversity, with ISSR markers showing a higher percentage of polymorphic loci (100%) than SRAP markers (97.8%). The genetic diversity of the accessions based on SRAP markers (h = 0.47, I = 0.66) and ISSR markers (h = 0.45, I = 0.64) supports the notion that the S. secundatum accessions are highly diverse. S. secundatum could be divided into three classes based on the evaluated molecular markers.ConclusionsPhenotypic and molecular marker analysis using SNP, SRAP, and ISSR markers revealed great genetic variation among S. secundatum accessions, which were consistently divided into three classes. Our findings provide a theoretical basis for the genetic diversity and classification of S. secundatum. Our results indicate that SNP, SRAP and ISSR markers are reliable and effective for analyzing genetic diversity in S. secundatum. The SNPs identified in this study could be used to distinguish S. secundatum accessions.
Project description:Stenotaphrum secundatum is an excellent shade-tolerant warm-season turfgrass. Its poor cold resistance severely limits its promotion and application in temperate regions. Mining cold resistance genes is highly important for the cultivation of cold-resistant Stenotaphrum secundatum. Although there have been many reports on the role of the Shaker potassium channel family under abiotic stress, such as drought and salt stress, there is still a lack of research on their role in cold resistance. In this study, the transcriptome database of Stenotaphrum secundatum was aligned with the whole genome of Setaria italica, and eight members of the Shaker potassium channel family in Stenotaphrum secundatum were identified and named SsKAT1.1, SsKAT1.2, SsKAT2.1, SsKAT2.2, SsAKT1.1, SsAKT2.1, SsAKT2.2, and SsKOR1. The KAT3-like gene, KOR2 homologous gene, and part of the AKT-type weakly inwardly rectifying channel have not been identified in the Stenotaphrum secundatum transcriptome database. A bioinformatics analysis revealed that the potassium channels of Stenotaphrum secundatum are highly conserved in terms of protein structure but have more homologous members in the same group than those of other species. Among the three species of Oryza sativa, Arabidopsis thaliana, and Setaria italica, the potassium channel of Stenotaphrum secundatum is more closely related to the potassium channel of Setaria italica, which is consistent with the taxonomic results of these species belonging to Paniceae. Subcellular location experiments demonstrate that SsKAT1.1 is a plasma membrane protein. The expression of SsKAT1.1 reversed the growth defect of the potassium absorption-deficient yeast strain R5421 under a low potassium supply, indicating that SsKAT1.1 is a functional potassium channel. The transformation of SsKAT1.1 into the cold-sensitive yeast strain INVSC1 increased the cold resistance of the yeast, indicating that SsKAT1.1 confers cold resistance. The transformation of SsKAT1.1 into the salt-sensitive yeast strain G19 increased the resistance of yeast to salt, indicating that SsKAT1.1 is involved in salt tolerance. These results suggest that the manipulation of SsKAT1.1 will improve the cold and salt stress resistance of Stenotaphrum secundatum.