Project description:In this study, we studied the fibrolytic potential of the rumen microbiota in the rumen of 6 lambs separated from their dams from 12h of age and artificially fed with milk replacer (MR) and starter feed from d8, in absence (3 lambs) or presence (3 lambs) of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. The fibrolytic potential of the rumen microbiota of the lambs at 56 days of age was analyzed with a DNA microarray (FibroChip) targeting genes coding for 8 glycoside hydrolase (GH) families.
2019-10-01 | GSE122256 | GEO
Project description:Using CLA to reduce early weaning stress of lambs
Project description:The common practise of artificially rearing some lambs from prolific meat breeds of sheep constitutes a welfare issue due to increased mortality rates and negative health issues. In this multidisciplinary study, we investigated the possible short and mid-term advantages of artificially feeding fresh ewe’s milk instead of commercial milk replacer on lambs’ growth, health and welfare. Romane lambs were either separated from their mothers on D3 and fed with Lacaune ewes’ milk (LAC, n=13) or milk replacer (REP, N=15), or they were reared by their mothers (MOT, n=15). On D45, they were weaned, gathered in single sex groups until the end of the study on D150. Lamb performance and biomarkers of overall health were assessed by measuring: growth, dirtiness of the perianal area, enteric pathogens in the faeces, total antioxidant status and redox status assessed by plasma reduced (GSH)/oxidized (GSSG) glutathione ratio, and immune response after vaccination against chlamydiosis. As an exploratory approach, blood cell transcriptomic profiles were also investigated. Last, Qualitative Behaviour Assessment was performed as an integrated welfare criteria. LAC and REP never differed in their average daily gain but grew less than MOT lambs in the early suckling period and just after weaning. No effect was detected afterwards. On D30, LAC and REP lambs had lower total antioxidant and higher redox status than MOT lambs but did not differ among themselves. LAC and MOT had a cleaner perianal area than REP lambs on D21, while faecal pathogen infection did not vary between the treatment groups. After vaccination, LAC also had a stronger immune response on D90 compared to REP lambs. Transcriptome analysis performed on D150 showed differential gene expression, mainly in relation to inflammatory, immune and cell cycle response, between male lambs of the LAC group and those of the MOT and REP groups. Based on Qualitative Behaviour Assessment, LAC lambs never differed from MOT lambs in their general activity and varied from REP only on D21; REP lambs were always more agitated than MOT lambs. In conclusion, artificial milk feeding impaired early growth rate, health, and emotional state mainly during the milk feeding period and at weaning. Feeding artificially reared lambs with fresh ewe's milk partly mitigated some of the negative effects induced by milk replacer but without achieving the full benefit of being reared by the mother.
2020-11-23 | GSE131763 | GEO
Project description:Using CLA to reduce early weaning rumen stress of lambs
Project description:Background: Environmental influences fluctuate throughout the life course of an organism. It is therefore important to understand how the timing of exposure impacts the molecular response. Here we examine the responses of two key molecular markers of dietary stress – variant-specific methylation at ribosomal DNA (rDNA) and small RNA distribution including tRNA fragments – in a mouse model of protein restriction (PR) with exposures pre- and/or post-weaning. Results: We first confirm that pre-weaning PR exposure modulates the methylation state of rDNA in a genotype-dependent manner whereas post-weaning PR exposure has no such effect. Conversely, post-weaning PR induces a shift in small RNA distribution, but there is no effect in the pre-weaning PR model. Intriguingly, mice exposed to PR throughout their lives show neither of these two dietary stress markers, similar to controls.
Project description:To investigate the effect of soy peptides on gut microial composition during juvenile social isolation, group-house (GH) and social isolation (SI) mice were fed a diet consisting of soy peptides or a control diet for 4 weeks post-weaning. We then performed microbial community analysis using data obtained from bacterial 16S rRNA gene sequencing in the fecal samples of 4 mice groups (control diet-fed GH, soy peptide-diet fed GH, control diet-fed SI, and soy peptide-diet fed SI mice).
Project description:Background: Environmental influences fluctuate throughout the life course of an organism. It is therefore important to understand how the timing of exposure impacts the molecular response. Here we examine the responses of two key molecular markers of dietary stress – variant-specific methylation at ribosomal DNA (rDNA) and small RNA distribution including tRNA fragments – in a mouse model of protein restriction (PR) with exposures pre- and/or post-weaning. Results: We first confirm that pre-weaning PR exposure modulates the methylation state of rDNA in a genotype-dependent manner whereas post-weaning PR exposure has no such effect. Conversely, post-weaning PR induces a shift in small RNA distribution, but there is no effect in the pre-weaning PR model. Intriguingly, mice exposed to PR throughout their lives show neither of these two dietary stress markers, similar to controls.
2018-04-09 | GSE107540 | GEO
Project description:Sodium butyrate supplement relieved weaning stress and reshaped microbial flora of weaned lambs
| PRJNA1091047 | ENA
Project description:Sodium butyrate supplement relieved weaning stress and reshaped microbial flora of weaned lambs