Project description:The Structural Maintenance of Chromosome (SMC) protein complexes cohesin, condensin and the Smc5/6 complex (Smc5/6) are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6’s recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 controls the spatial organization of supercoiled chromosomal regions. The results show that Smc5/6 associates with transcription-induced positively supercoiled chromosomal DNA at cohesin-dependent chromosome loop boundaries. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes, and efficiently initiates loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
Project description:The Structural Maintenance of Chromosome (SMC) protein complexes cohesin, condensin and the Smc5/6 complex (Smc5/6) are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6’s recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 controls the spatial organization of supercoiled chromosomal regions. The results show that Smc5/6 associates with transcription-induced positively supercoiled chromosomal DNA at cohesin-dependent chromosome loop boundaries. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes, and efficiently initiates loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
Project description:The Structural Maintenance of Chromosome (SMC) protein complexes cohesin, condensin and the Smc5/6 complex (Smc5/6) are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6’s recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 controls the spatial organization of supercoiled chromosomal regions. The results show that Smc5/6 associates with transcription-induced positively supercoiled chromosomal DNA at cohesin-dependent chromosome loop boundaries. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes, and efficiently initiates loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.
Project description:Beyond its essential roles in ensuring faithful chromosome segregation and genomic stability, the human Smc5/6 complex acts as an antiviral factor. It binds to and impedes the transcription of extrachromosomal DNA templates; an ability which is lost upon chromosomal DNA integration. How the complex distinguishes among different DNA templates is unknown. Here we show that, in human cells, Smc5/6 preferentially binds to circular rather than linear extrachromosomal DNA. We further show that this binding is unlikely due to differences in the chromatin composition. Instead, the transcriptional process, per se, and more specifically the accumulation of DNA secondary structures known to be substrates for topoisomerases, is responsible for Smc5/6 recruitment. Those findings, in conjunction with our genome-wide Smc5/6 binding analysis showing that Smc5/6 localises at few but highly transcribe chromosome loci, reveal a previously unforeseen role of Smc5/6 in DNA topology management during transcription.