Project description:We performed single-cell RNA-sequencing of tumor immune infiltrates and matched peripheral blood mononuclear cells of checkpoint inhibitor (CPI)-naive stage III-IV metastatic melanoma patients. After sample collection, the same patients received CPI-treatment and their response was assessed.
Project description:Puccinia graminis f.sp. tritici (Pgt), the causal agent of stem rust disease in wheat, is one of the most destructive pathogens and can cause severe yield losses. Here, we utilize Hi-C sequencing technology to scaffold and phase the haplotypes for the genome assembly of a US Pgt isolate 99KS76A-1.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The proteome of the SS13 isolate assigned to the Chromatiaceae family was assessed by shotgun proteomics using a pan-proteomics database for the genus Rheinheimera and a whole genome sequencing -derived database.
Project description:Background: Ascaris lumbricoides cystatin (Al-CPI) prevents development of allergic airway inflammation and colitis in mice models. It has been suggested that helminth derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 μM of Al-CPI and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using STAR. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al‐CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in kruppel like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136 ), palladin (FC 2, PBH = 3 x 10-41 ) and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41 ). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of LPS. Regarding the pathway of negative regulation of immune response, we found significant decrease in cell surface expression of CD86, HLA-DR and PD-L1 upon stimulation with 1 μM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. Several SMADs, members of the TGF-beta and the IL-10 families, including KLF10 were also This is a provisional file, not the final typeset article modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.
Project description:Checkpoint inhibitors (CPIs) targeting PD-1/PD-L1 and CTLA-4 have revolutionized cancer treatment but can trigger autoimmune complications including CPI-induced diabetes (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induces DM rapidly. RNA sequencing revealed that cytolytic IFNγ+ CD8+ T cells infiltrated islets with anti-PD-L1. Changes in β cells were predominantly driven by IFNγ and TNFα and included induction of a novel β cell population with transcriptional changes suggesting dedifferentiation. IFNγ increased checkpoint ligand expression and activated apoptosis pathways in human β cells in vitro. Treatment with anti-IFNγ and anti-TNFα prevented CPI-DM in anti-PD-L1 treated NOD mice. CPIs targeting the PD-1/PD-L1 pathway result in transcriptional changes in β cells and immune infiltrates that may lead to the development of diabetes. Inhibition of inflammatory cytokines can prevent CPI-DM, suggesting a strategy for clinical application to prevent this complication.