Project description:Aluminum (Al) toxicity in plants is one of the primary constraints in crop production. Al³⁺, the most toxic form of Al, is released into soil under acidic conditions and causes extensive damage to plants, especially in the roots. In rice, Al tolerance requires the ASR5 gene, but the molecular function of ASR5 has remained unknown. This data establish a comparative study of miRNAome profiles in ASR5 knockdown rice plants (ssp. Japonica cv. Nipponbare) under Al stress conditions.
2017-11-09 | GSE77046 | GEO
Project description:acidic soil sample sequencing
| PRJNA559847 | ENA
Project description:Biofilms in extremely acidic soil
Project description:The response of soil microbial community to climate warming through both function shift and composition reorganization may profoundly influence global nutrient cycles, leading to potential significant carbon release from the terrain to the atmosphere. Despite the observed carbon flux change in northern permafrost, it remains unclear how soil microbial community contributes to this ecosystem alteration. Here, we applied microarray-based GeoChip 4.0 to investigate the functional and compositional response of subsurface (15~25cm) soil microbial community under about one year’s artificial heating (+2°C) in the Carbon in Permafrost Experimental Heating Research site on Alaska’s moist acidic tundra. Statistical analyses of GeoChip signal intensities showed significant microbial function shift in AK samples. Detrended correspondence analysis and dissimilarity tests (MRPP and ANOSIM) indicated significant functional structure difference between the warmed and the control communities. ANOVA revealed that 60% of the 70 detected individual genes in carbon, nitrogen, phosphorous and sulfur cyclings were substantially increased (p<0.05) by heating. 18 out of 33 detected carbon degradation genes were more abundant in warming samples in AK site, regardless of the discrepancy of labile or recalcitrant C, indicating a high temperature sensitivity of carbon degradation genes in rich carbon pool environment. These results demonstrated a rapid response of northern permafrost soil microbial community to warming. Considering the large carbon storage in northern permafrost region, microbial activity in this region may cause dramatic positive feedback to climate change, which is important and necessary to be integrated into climate change models.
Project description:Root transcriptomes of acidic soil adapted rice genotypes viz. Sahbhagi Dhan (SD) and Chakhao Poreiton (CP) was done in response to low phosphorus (P) levels. RNAseq approach after 15 days of low P treatment was employed to understand long term molecular processes involved in low P tolerance. Note: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:The rapid expansion of fast-growing plantations in subtropical regions is closely linked to dry-season irrigation and fertilization; however, improper practices often lead to soil acidification and reduced nutrient bioavailability. Phosphorus (P), one of the most critical elements for plantation tree growth, shows complex spatial distribution patterns in soil that are influenced by multiple factors, directly affecting plantation productivity. This study investigated the effects of long-term fertilization and dry-season irrigation on the vertical distribution of phosphorus in an 8-year-old subtropical Eucalyptus plantation. This study employed stratified sampling (0–30 cm topsoil, 30–60 cm subsoil, 60–90 cm substratum) during dry seasons, coupled with metagenomics, metabolomics, and environmental factor analysis, to reveal vertical phosphorus cycling patterns and multiomics regulatory networks. Key findings: (1) Fertilization and dry-season irrigation had a limited influence on labile phosphorus and the diversity of P-cycling microorganisms. The topsoil presented significantly greater P availability than did the subsoil, manifested as elevated acid phosphatase activity (ACP), significant enrichment of the tryptophan metabolic pathway, and greater microbial diversity. (2) pH and the C:P ratio represent critical factors of vertical stratification in soil P cycling. Under acidic conditions, topsoil microorganisms facilitate P release via diverse metabolic pathways, whereas oligotrophic constraints in the substratum limit enzymatic activities. (3) We believe that potential cross-stratum microbial functional coordination exists in acidic soil P cycling, with linkages to tryptophan metabolism and polyP synthesis/degradation. Our study provides theoretical multiomics insights for optimizing the management of soil P pools in subtropical plantations under fertilization and dry-season irrigation.
Project description:<p>Diazotrophic cyanobacteria have a pivotal role in nitrogen fixation and soil fertility in paddy ecosystems, yet their responses to soil acidity stress (SAS) remain elusive. This study investigated the physiological and metabolic mechanisms underlying acid tolerance in diazotrophic cyanobacteria by comparing an acid-resistant strain (Nostoc sp. AT-23S) and an acid-sensitive strain (Nostoc sp. AS-61S) under acidic (pH 4.68) and neutral (pH 7.0) soil conditions. The results demonstrated that AT-23S maintained cytoplasmic pH homeostasis, sustained high levels of photosynthetic efficiency and nitrogenase activity, and exhibited enhanced synthesis of tightly bound extracellular polysaccharides (TB-EPS) under acid stress. Metabolomic analysis revealed significant up-regulation of gamma-aminobutyric acid (GABA) and 1-pyrroline-5-carboxylic acid (P5C) in AT-23S under acid stress; in contrast, AS-61S failed to maintain pH homeostasis, showed severe oxidative stress, and down-regulated GABA and P5C synthesis. The GABA was primarily originated from the putrescine degradation pathway, as confirmed by elevated diamine oxidase (DAO) activity and putrescine utilization rate. These findings demonstrate that the accumulation of GABA and P5C may be critical adaptive mechanism for acid tolerance in diazotrophic cyanobacteria, providing novel insights into their survival in acidic paddy soils.</p>