Project description:The study used wild type (WT) and Baz2b-knockout (KO) mice to establish a subacute doxorubicin (DOX)-induced cardiotoxicity model by intraperitoneal injection for 6 times in 2 weeks. Mice injected with equivalent PBS were used as the control group.
Project description:Doxorubicin (DOXO), a chemotherapeutic drug, is cardiotoxic. We hypothesized that folic acid is an effective therapeutic agent in a mouse model of DOXO-induced cardiotoxicity. We performed genome-wide expression profiling to identify the underlying mechanisms. Male C57Bl6 2-mo old mice received DOXO (1x20 mg/kg, ip) or saline (sham). FA (10 mg/d) or placebo (plac) was administered 7d before DOXO administration until the end of the experiment (10d).
Project description:Doxorubicin (DOXO), a chemotherapeutic drug, is cardiotoxic. We hypothesized that folic acid is an effective therapeutic agent in a mouse model of DOXO-induced cardiotoxicity. We performed genome-wide expression profiling to identify the underlying mechanisms.
Project description:Wild-type (WT) and Otub1-heterozygously knock-out mice were applied in the study. Doxorubicin (DOX)-induced subacute cardiotoxicity mouse model was established by 6 intraperitoneal injections during a 2-week period. The differentially expressed genes were analyzed by RNA-sequencing and clustering analyses.
Project description:We overexpressed miR-212/132 by AAV9 in mouse model of doxorubicin-induced cardiotoxicity and wanted to identify myocardial targets of miR-212/132 in this model.
Project description:Doxorubicin (Dox) is an effective chemotherapeutic agent against a broad range of tumors. However, a threshold dose of doxorubicin causes an unacceptably high incidence of heart failure and limits its clinical utility. We have established two models of doxorubicin cardiotoxicity in mice: 1) in an acute model, mice are treated with 15mg/kg of doxorubicin once; 2) in a chronic model, they receive 3mg/kg weekly for the first 12 of a total of 18 weeks. Using echocardiography, we have monitored left ventricular function of the mouse hearts during treatment in chronic model and seen the expected development of dilated cardiomyopathy (DCM). Treated mice showed histological abnormalities similar to those seen in patients with doxorubicin cardiomyopathy. To investigate transcriptional regulation in these models, we used a microarray we generated with over 5000 independent cDNA clones from murine heart and skeletal muscle. We have identified genes that respond to doxorubicin exposure in both model systems, and confirmed these results using real-time PCR. In the acute model, a set of genes is regulated early and rapidly returns to baseline levels, consistent with the half-life of doxorubicin. In the chronic model, which mimics the clinical situation much more closely, we identified dysregulated genes that implicate specific mechanisms of cardiac toxicity and may serve as biomarkers of doxorubicin induced dilated cardiomyopathy. Keywords: time course
Project description:The clinical application of anthracyclines such as doxorubicin (DOX) is limited due to their cardiotoxicity. N6-methyladenosine (m6A) plays an essential role in numerous biological processes. However, the roles of m6A and m6A demethylase ALKBH5 in DOX-induced cardiotoxicity (DIC) remain unclear. In this research, DIC models were constructed using Alkbh5-knockout (KO), Alkbh5-knockin (KI), and Alkbh5-myocardial-specific knockout (ALKBH5flox/flox, αMyHC-Cre) mice. Cardiac function and DOX-mediated signal transduction were investigated. As a result, both Alkbh5 whole-body KO and myocardial-specific KO mice had increased mortality, decreased cardiac function, and aggravated DIC injury with severe myocardial mitochondrial damage. Conversely, ALKBH5 overexpression alleviated DOX-mediated mitochondrial injury, increased survival, and improved myocardial function. Mechanistically, ALKBH5 regulated the expression of Rasal3 in an m6A-dependent manner through posttranscriptional mRNA regulation and reduced Rasal3 mRNA stability, thus activating RAS3, inhibiting apoptosis through the RAS/RAF/ERK signaling pathway, and alleviating DIC injury. These findings indicate the potential therapeutic effect of ALKBH5 on DIC.
Project description:The urgent need to understand the molecular modulation associated with chronic cardiotoxicity of doxorubicin (DOX) has prompted us to investigate the ubiquitome profile of aged cardiac muscle. Using old CD-1 male mice administered with a DOX dosage established to induce cardiotoxicity, we performed a comprehensive analysis of the proteomic profile of the enriched pool of poly-ubiquitinated proteins obtained from cardiac muscle using tandem ubiquitin-binding entities (TUBEs). GeLC-MS/MS and subsequent bioinformatic analysis revealed several proteins with the poly-ubiquitination modification involved in DOX-induced cardiotoxicity. Increased poly-ubiquitination levels were found for sarcomeric proteins including alpha-actinin-2 and desmin as well as mitochondrial proteins such as ATP synthase subunit beta and cytochrome b-c1 complex subunit 1. Thus, impaired protein ubiquitination emerges as an enduring consequence of DOX-induced cardiotoxicity. The present exploratory analysis could be considered an important starting point for further studies targeting molecular pathways under the side effects of the widely used anticancer drug DOX.