Project description:We used microarray analyses in adult female zebrafish (Danio rerio) to identify metabolic pathways regulated by starvation in two key organs that 1) serve biosynthetic and energy mobilizing functions (liver) and 2) consume energy and direct behavioral responses (brain). Starvation affected the expression of 574 transcripts in the liver, indicating an overall decrease in metabolic activity, reduced lipid metabolism, protein biosynthesis and proteolysis, and cellular respiration, and increased gluconeogenesis. Starvation also regulated expression of many components of the Unfolded Protein Response, the first such report in a species other than yeast (Saccharomyces cerevisiae) and mice (Mus musculus). The response of the zebrafish hepatic transcriptome to starvation was strikingly similar to that of rainbow trout (Oncorhynchus mykiss), but very different from common carp (Cyprinus carpio) and mouse. The transcriptome of zebrafish whole brain was much less affected than the liver, with only two differentially expressed genes, both down-regulated. Down-regulation of one of these genes, matrix metalloproteinase 9 (mmp9), suggests increased inhibition of apoptosis (neuroprotection) and decreased restructuring of the extracellular matrix in the brain of starved zebrafish. The low level of response in the transcriptome of whole zebrafish brain agrees with observations that the brain is metabolically protected compared to the rest of the body. Experiment Overall Design: Brain treatments: Starved (21 days) and Control (Fed). Four microarrays per treatment. Experiment Overall Design: Liver treatments: Starved (21 days) and Control (Fed). Five microarrays per treatment. Experiment Overall Design: Data for brain and liver were normalized and analyzed separately because variances of expression differed considerably between the tissues.
Project description:Using 2 male and 2 female zebrafish (pool of 6) brain samples, we generated base-resolution DNA methylation maps to document sex-specific epigenetic differences. Here we generated single-nucleotide resoultion DNA methylation map of 4 zebrafish brain samples using Reduced Representation Bisulfite Sequencing (RRBS)
Project description:Zebrafish wildtype adult brain and rb1-embryonal brain tumor transcriptomes were used to identify candidate rb1-interacting chromatin remodelers and epigenetic regulators altered in rb1- transformed brain tumor cells. The data was also used for comparative analysis with zebrafish rb1-/- mutant transcriptome, to identify molecular pathways that distinguish transformed rb1- tumor cells from non-transformed rb1-/- mutant cells.
Project description:In zebrafish brain, radial glia cells (RG) show a remarkable ability to regenerate damaged neural tissue by reentering cell proliferation and produce neural precursors. To understand how RG respond to brain damage and initiate the regenerative response, we applied single-cell transcriptome analysis to RG in zebrafish adult telencephalon.
Project description:We used microarray analyses in adult female zebrafish (Danio rerio) to identify metabolic pathways regulated by starvation in two key organs that 1) serve biosynthetic and energy mobilizing functions (liver) and 2) consume energy and direct behavioral responses (brain). Starvation affected the expression of 574 transcripts in the liver, indicating an overall decrease in metabolic activity, reduced lipid metabolism, protein biosynthesis and proteolysis, and cellular respiration, and increased gluconeogenesis. Starvation also regulated expression of many components of the Unfolded Protein Response, the first such report in a species other than yeast (Saccharomyces cerevisiae) and mice (Mus musculus). The response of the zebrafish hepatic transcriptome to starvation was strikingly similar to that of rainbow trout (Oncorhynchus mykiss), but very different from common carp (Cyprinus carpio) and mouse. The transcriptome of zebrafish whole brain was much less affected than the liver, with only two differentially expressed genes, both down-regulated. Down-regulation of one of these genes, matrix metalloproteinase 9 (mmp9), suggests increased inhibition of apoptosis (neuroprotection) and decreased restructuring of the extracellular matrix in the brain of starved zebrafish. The low level of response in the transcriptome of whole zebrafish brain agrees with observations that the brain is metabolically protected compared to the rest of the body. Keywords: starvation study
Project description:Purpose: Identify zebrafish microglia transcriptome in the healthy and neurodegenerative brain. Methods: RNA sequencing was performed on FACS-sorted microglia (3x), other brain cells (3x) and activated microglia (4x). Microglia activation was induced using nitroreductase-mediated cell ablation. 10-20 million reads per sample were obtained. Reads were mapped to zebrafish genome GRC10. Results: We identified the zebrafish microglia transcriptome, which shows overlap with previously identified mouse microglia transcriptomes. Transcriptomes obtained 24h and 48h after treatment appeared highly similar. Therefore, these datasets were pooled. Additionally, we identified an acute proliferative response of microglia to induced neuronal cell death.
Project description:An assessment of brain transcriptome differences between zebrafish siblings homozygous, heterozygous, and wild type for a loss-of-function mutation in mfn2.