Project description:High-content cellular imaging, transcriptomics, and proteomics data provide rich and complementary views on the molecular layers of biology that influence cellular states and function. However, the biological determinants through which changes in multi-omics measurements influence cellular morphology have not yet been systematically explored, and the degree to which cell imaging could potentially enable the prediction of multi-omics directly from cell imaging data is therefore currently unclear. Here, we address the question of whether it is possible to predict bulk multi-omics measurements directly from cell images using Image2Omics -- a deep learning approach that predicts multi-omics in a cell population directly from high-content images stained with multiplexed fluorescent dyes. We perform an experimental evaluation in gene-edited macrophages derived from human induced pluripotent stem cell (hiPSC) under multiple stimulation conditions and demonstrate that Image2Omics achieves significantly better performance in predicting transcriptomics and proteomics measurements directly from cell images than predictors based on the mean observed training set abundance. We observed significant predictability of abundances for 5903 (22.43%; 95% CI: 8.77%, 38.88%) and 5819 (22.11%; 95% CI: 10.40%, 38.08%) transcripts out of 26137 in M1 and M2-stimulated macrophages respectively and for 1933 (38.77%; 95% CI: 36.94%, 39.85%) and 2055 (41.22%; 95% CI: 39.31%, 42.42%) proteins out of 4986 in M1 and M2-stimulated macrophages respectively. Our results show that some transcript and protein abundances are predictable from cell imaging and that cell imaging may potentially, in some settings and depending on the mechanisms of interest and desired performance threshold, even be a scalable and resource-efficient substitute for multi-omics measurements.
Project description:Prediction of protein localization plays an important role in understanding protein function and mechanism. A deep learning-based localization prediction tool (“MULocDeep”) assessing each amino acid’s contribution to the localization process provides insights into the mechanism of protein sorting and localization motifs. A dataset with 45 sub-organellar localization annotations under 10 major sub-cellular compartments was produced and the tool was tested on an independent dataset of mitochondrial proteins that were extracted from Arabidopsis thaliana cell cultures, Solanum tuberosum tubers, and Vicia faba roots, and analyzed by shotgun mass spectrometry.
Project description:Fusarium head blight (FHB) incited by Fusarium graminearum Schwabe is a devastating disease of barley and other cereal crops worldwide. Fusarium head blight is associated with trichothecene mycotoxins such as deoxynivalenol (DON), where contaminated grains are unfit for malting or animal feed industries. While genetically resistant cultivars offer the best economic and environmentally responsible means to mitigate disease, parent lines with adequate resistance are limited in barley. Resistancebreeding based upon quantitative genetic gains has been slow to date, due to intensive labour requirements of disease nurseries. The development of high throughput genome-wide molecular markers, allow application in genomic prediction models. A diverse genomic panel consisting of 400 two-row spring barley lines was assembled to focus on Canadian barley breeding programs. The panel was evaluated for FHB and DON content in three environments and over two years. Moreover, it was genotyped using an Illumina Infinium HTS iSelect custom beadchip array of single nucleotide polymorphic molecular markers (50K SNP), where over 23K molecular markers were polymorphic. Genomic prediction has been successfully demonstrated for reducing FHB and DON content in cereals using various statistically-based models of different underlying assumptions. Herein, we have studied an alternative method basedon machine learning and compare it with a statistical approach. Two encoding techniques were utilized (categorical or Hardy-Weinberg frequencies), followed by selecting essential genomic markers for phenotype prediction. Subsequently, we applied a transformer-based deep learning algorithm to predict FHB and DON. Apart from the transformer method, we also implemented a Residual Fully Connected Neural Network (RFCNN). Pearson correlation coefficients were calculated to compare true vs. predicted outputs. Under most model scenarios, the use of all markers vs. selected markers marginally improved prediction performance except for RFCNN method for FHB (27.6%). Hardy-Weinberg encoding generally improved correlation for FHB (6.9%) and DON (9.6%) for transformer. This study suggests the potential of the transformer based method for genomic prediction of complex traits such as FHB or DON, having performed better or equally compared with existing machine learning and statistical method. To genomic prediction in barley for Fusarium head blight and deoxynivalenol content using a custom Illumina Infinium array (BarleySNP50-JHI) (www.illumina.com). Sample types included leaves from 400 barley genotypes mostly of Canadian origin. This series includes 400 genotypes assayed on an Illumina infinium HTS platform 50K BeadChip.
Project description:Deep learning has achieved a notable success in mass spectrometry-based proteomics and is now emerging in glycoproteomics. While various deep learning models can predict fragment mass spectra of peptides with good accuracy, they cannot cope with the non-linear glycan structure in an intact glycopeptide. Herein, we propose a deep learning-based approach for the prediction of fragment spectra of intact glycopeptides. Our model adopts tree-structured long-short term memory networks to process the glycan moiety and a graph neural network architecture to incorporate potential fragmentation pathways of a specific glycan structure. This feature is beneficial to model explainability and differentiation ability of glycan structural isomers. We further demonstrated that predicted spectral libraries can be used for analyzing DIA data of glycopeptides as a supplement for library completeness. We expect that this work will provide a valuable deep learning resource for glycoproteomics.
Project description:Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.