Project description:<p><strong>BACKGROUND:</strong> Plants exhibit wide chemical diversity due to the production of specialized metabolites that function as pollinator attractants, defensive compounds, and signaling molecules. Lamiaceae (mints) are known for their chemodiversity and have been cultivated for use as culinary herbs, as well as sources of insect repellents, health-promoting compounds, and fragrance.</p><p><strong>FINDINGS:</strong> We report the chromosome-scale genome assembly of Callicarpa americana L. (American beautyberry), a species within the early-diverging Callicarpoideae clade of Lamiaceae, known for its metallic purple fruits and use as an insect repellent due to its production of terpenoids. Using long-read sequencing and Hi-C scaffolding, we generated a 506.1-Mb assembly spanning 17 pseudomolecules with N50 contig and N50 scaffold sizes of 7.5 and 29.0 Mb, respectively. In all, 32,164 genes were annotated, including 53 candidate terpene synthases and 47 putative clusters of specialized metabolite biosynthetic pathways. Our analyses revealed 3 putative whole-genome duplication events, which, together with local tandem duplications, contributed to gene family expansion of terpene synthases. Kolavenyl diphosphate is a gateway to many of the bioactive terpenoids in C. americana; experimental validation confirmed that CamTPS2 encodes kolavenyl diphosphate synthase. Syntenic analyses with Tectona grandis L. f. (teak), a member of the Tectonoideae clade of Lamiaceae known for exceptionally strong wood resistant to insects, revealed 963 collinear blocks and 21,297 C. americana syntelogs.</p><p><strong>CONCLUSIONS:</strong> Access to the C. americana genome provides a road map for rapid discovery of genes encoding plant-derived agrichemicals and a key resource for understanding the evolution of chemical diversity in Lamiaceae.</p>
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological, and behavioral transition undertaken by some juveniles that culminates in a seaward migration. This species is experimentally tractable and, unlike common model species, displays intra- and inter-population variation in migration propensity. Migratory individuals can produce non-migratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulfite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (non-migratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were of high magnitude, ranging from 20-62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with a migration-related transition in any species. Comparing global DNA methyldation profiles (via RRBS) of resident and smolt O. mykiss siblings using caudal fin tissue.
Project description:to profile the adverse effects of an emamectin benzoate trunk-injection agent on pine wood nematode Bursaphelenchus xylophilus by analysing differential transcripts from the nematode whole genome through next-generation high-throughput sequencing.
Project description:DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pine wood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives and spreads at low temperatures through third-stage dispersal larvae, making it a major pathogen for pine wood in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal larvae, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal larvae and three other stages propagative larvae of PWN.
Project description:DNA methylation is a pivotal process that regulates gene expression and facilitates rapid adaptation to challenging environments. The pine wood nematode (PWN; Bursaphelenchus xylophilus), the causative agent of pine wilt disease, survives and spreads at low temperatures through third-stage dispersal larvae, making it a major pathogen for pine wood in Asia. To comprehend the impact of DNA methylation on the formation and environmental adaptation of third-stage dispersal larvae, we conducted whole-genome bisulfite sequencing and transcriptional sequencing on both the third-stage dispersal larvae and three other stages propagative larvae of PWN.