Sort   by:  
 Page size 
0
compare the gene expression profile between irradiated Lin-Sca-1+c-Kit+ (LSK) cells from mouse bone marrow reconstituted with wild type and necdin null fetal liver cells The Affymetrix oligonucleotide array was used for this analysis compare the gene expression profile betweenirradiated Lin-Sca-1+c-K...
ORGANISM(S): Mus musculus 
0

We have performed whole genome sequencing of 4 cases of pediatric acute megakaryoblastic leukemia to identify somatic genetic alterations driving leukemogenesis.

0
Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLI...
...he inv(16)(p13.3;q24.3).  Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case.  Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9).  Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL.  In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%).  To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings.  Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differenti...
ORGANISM(S): Homo sapiens 
0
Transcriptome Sequence Analysis of Pediatric Acute Megakaryoblastic Leukemia Identifies An Inv(16)(p13.3;q24.3)-Encoded CBFA2T3-GLI...
...he inv(16)(p13.3;q24.3).  Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case.  Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9).  Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL.  In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%).  To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings.  Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differenti...
ORGANISM(S): Homo sapiens 
0
Not available
0
Not available
0
Not available
Sort   by:  
 Page size