Project description:Introduction: Parkinson's disease (PD), typically developing between the ages of 55 and 65 years, is a common neurodegenerative disorder caused by a progressive loss of dopaminergic neurons due to the accumulation of α-synuclein in the substantia nigra. Mitochondria are known to play a key role in cell respiratory function and bioenergetic. Indeed, mitochondrial dysfunction causes an insufficient energy production required to satisfy the needs of several organs, especially the nervous system. Material and methods: The present study explored the mRNA expression of mitochondrial DNA (mtDNA) encoded respiratory chain (RC) subunits in PD patients by using the next generation sequencing analysis (NGS) and the quantitative real-time PCR (qRT-PCR) assay for the confirmation of the NGS results. Results: All tested mitochondrial RC subunits was significantly over-expressed in subjects with PD compared to normal controls . In qRT-PCR the mean expression of all mitochondrial subunits had an expression level of at least 7 times compared to controls. Conclusion: The over-expression of mitochondrial subunits in PD subjects might be secondary to a degeneration-related alteration of the mitochondrial structure or dynamics or to the occurrence of a compensatory mechanism. The study of specific mRNA by peripheral blood mononuclear cells (PBMCs) may provide a better diagnostic frame to early detect PD cases.
Project description:mTRAN proteins are components of the plant mitochondrial small subunits, thought to bind the mRNA 5' regions to initiate translation. This experiment was designed to identify the mTRAN1 binding regions on the plant mitochondrial mRNAs
Project description:Background: Transcription control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study, we combined RNA sequencing of human complex I-deficient patient cells across 32 conditions of perturbed mitochondrial metabolism, with a comprehensive analysis of gene expression patterns, co-expression calculations and transcription factor binding sites. Results: Our analysis shows that OXPHOS genes have a significantly higher co-expression with each other than with other genes, including mitochondrial genes. We found no evidence for complex-specific mRNA expression regulation in the tested cell types and conditions: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of OXPHOS complex subunits compared to assembly factors, suggesting divergent transcription programs. Furthermore, complex I co-expression calculations identified 684 genes with a likely role in OXPHOS biogenesis and function. Analysis of evolutionarily conserved transcription factor binding sites in the promoters of these genes revealed almost all known OXPHOS regulators (including GABP, NRF1/2, SP1, YY1, E-box factors) and a set of six yet uncharacterized candidate transcription factors (ELK1, KLF7, SP4, EHF, ZNF143, and EL2). Conclusions: OXPHOS genes share an expression program distinct from other mitochondrial genes, indicative of targeted regulation of this mitochondrial sub-process. Within the subset of OXPHOS genes we established a difference in expression between subunits and assembly factors. Most transcription regulators of genes that co-express with complex I are well-established factors for OXPHOS biogenesis. For the remaining six factors we here suggest for the first time a link with transcription regulation in OXPHOS deficiency. RNA-SEQ of whole cell RNA in 2 control and 2 complex I deficient patient fibroblast cell lines treated with 4 compounds in duplicate, resulting in a total of 2x2x4x2=32 samples
Project description:Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. To identify a common cellular response to RC disease, systems biology level transcriptome investigations were performed in human RC disease skeletal muscle and fibroblasts. Global transcriptional and post-transcriptional dysregulation in a tissue-specific fashion was identified across diverse RC complex and genetic etiologies. RC disease muscle was characterized by decreased transcription of cytosolic ribosomal proteins to reduce energy-intensive anabolic processes, increased transcription of mitochondrial ribosomal proteins, shortened 5'-UTRs to improve translational efficiency, and stabilization of 3'-UTRs containing AU-rich elements. These same modifications in a reversed direction typified RC disease fibroblasts. RC disease also dysregulated transcriptional networks related to basic nutrient-sensing signaling pathways, which collectively mediate many aspects of tissue-specific cellular responses to primary RC disease. These findings support the utility of a systems biology approach to improve mechanistic understanding of mitochondrial RC disease. To identify a common cellular response to primary RC that might improve mechanistic understanding and lead to targeted therapies for human RC disease, we performed collective transcriptome profiling in skeletal muscle biopsy specimens and fibroblast cell lines (FCLs) of a diverse cohort of human mitochondrial disease subjects relative to controls. Systems biology investigations of common cellular responses to primary RC disease revealed a collective pattern of transcriptional, post-transcriptional and translational dysregulation occurring in a highly tissue-specific fashion. Affymetrix Human Exon 1.0ST microarray analysis was performed on 29 skeletal muscle samples and Fibroblast cell lines from mitochondrial disease patients and age- and gender-matched controls.
Project description:Skeletal muscle mitochondrial dysfunction is secondary to T2DM and can be improved by long-term regular exercise training Mitochondrial dysfunction has long been implicated to play a causative role in development of type 2 diabetes (T2DM). However, a growing number of recent studies provide data that mitochondrial dysfunction is a consequence of T2DM development. The aim of our study is to clarify in further detail the causal role of mitochondrial dysfunction in T2DM by a comprehensive ex vivo analysis of mitochondrial function combined with global gene expression analysis in muscle of pre-diabetic newly diagnosed untreated T2DM subjects and long-standing insulin treated T2DM subjects compared with age- and BMI-matched controls. In addition, we assessed the impact of long-term interval exercise training on physical activity performance, mitochondrial function and glycemic control in long-standing insulin-treated T2DM subjects. Ex vivo mitochondrial density, quality and functioning was comparable between pre-diabetic subjects and matched controls, however, gene expression analysis showed a switch from carbohydrate toward lipids as energy source in pre-diabetes subjects. In contrast, long-term insulin treated T2DM subjects had slightly decreased mitochondrial density and ex vivo function. Expression of Krebs cycle and OXPHOS related genes were decreased, indicating a decreased capacity to use lipids as an energy source. The insulin-treated T2DM subjects had a lower physical activity level than pre-diabetic and normoglycemic subjects. A 52 weeks exercise training of these subjects increased submaximal oxidative efficiency, increased in vivo PCr recovery rate, as well as mildly increased in vitro mitochondrial function. Gene expression of β-oxidation, Krebs cycle and OXPHOS-related genes was increased. Our data demonstrate that mitochondrial dysfunction is rather a consequence than a causative factor in T2DM development as it was only detected in overt diabetes and not in early diabetes. Regular exercise training stabilized exogenous insulin requirement and improved mitochondrial functioning, fatty acid oxidation and general physical work load capacity in long-standing insulin-treated T2DM subjects. As such, the present study shows for the first time that long-term exercise interventions are beneficial in this group of complex diabetes patient and may prevent further metabolic deterioration. Insulin-treated T2DM subjects before and after 52 weeks of exercise training (T2DM_0 and T2DM_52), normoglycemic controls (NGT) and pre-diabetes subjects (IGT) and were selected. RNA was extracted from skeletal muscle biopsies and hybridized on Affymetrix microarrays.
Project description:eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNAeIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multi-omic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. -selective functions of individual subunits remain poorly defined. Using multi-omic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth.
Project description:Mammalian mitochondrial ribosomes are unique molecular machines that translate 11 leaderless mRNAs. To date it is not clear how mitoribosomes recognize and initiate translation in the absence of untranslated regions in the mitochondrial mRNAs. Translation initiation in mitochondria shares similarities with prokaryotic systems, such as the formation of a ternary complex of fMet-tRNAMet, mRNA and the 28S subunit, but differs in the requirements for initiation factors. Mitochondria have two initiation factors, MTIF2 that closes the decoding centre and stabilizes the binding of the fMet-tRNAMet to the leaderless mRNAs, and MTIF3 whose role is not clear. We knocked out Mtif3 in mice and show that this protein is essential for embryo development and heart- and skeletal muscle-specific loss of MTIF3 causes premature death. We identify increased but uncoordinated mitochondrial protein synthesis in mice lacking MTIF3 that results in loss of specific respiratory complexes. Therefore, we show that coordinated assembly of OXPHOS complexes requires stoichiometric levels of nuclear and mitochondrially-encoded protein subunits in vivo. Our ribosome profiling and transcriptomic analyses show that MTIF3 is required for recognition and regulation of translation initiation of mitochondrial mRNAs, but not dissociation of the ribosome subunits.