Models

Dataset Information

0

Wei2011_MLCactivationPathway_EndothelialPermeability


ABSTRACT: This model is from the article: An Integrated Mathematical Model of Thrombin-, Histamine-and VEGF-Mediated Signalling in Endothelial Permeability. Wei X, Han B, Zhang J, Liu X, Tan C, Jiang Y, Low B, Tidor B, Chen Y. BMC Syst Biol. 2011 Jul 15;5:112. 21756365 , Abstract: Endothelial permeability is involved in injury, inflammation, diabetes and cancer. It is partly regulated by the thrombin-, histamine-, and VEGF-mediated myosin-light-chain (MLC) activation pathways. While these pathways have been investigated, questions such as temporal effects and the dynamics of multi-mediator regulation remain to be fully studied. Mathematical modeling of these pathways facilitates such studies. Based on the published ordinary differential equation models of the pathway components, we developed an integrated model of thrombin-, histamine-, and VEGF-mediated MLC activation pathways. RESULTS: Our model was validated against experimental data for calcium release and thrombin-, histamine-, and VEGF-mediated MLC activation. The simulated effects of PAR-1, Rho GTPase, ROCK, VEGF and VEGFR2 over-expression on MLC activation, and the collective modulation by thrombin and histamine are consistent with experimental findings. Our model was used to predict enhanced MLC activation by CPI-17 over-expression and by synergistic action of thrombin and VEGF at low mediator levels. These may have impact in endothelial permeability and metastasis in cancer patients with blood coagulation. CONCLUSION: Our model was validated against a number of experimental findings and the observed synergistic effects of low concentrations of thrombin and histamine in mediating the activation of MLC. It can be used to predict the effects of altered pathway components, collective actions of multiple mediators and the potential impact to various diseases. Similar to the published models of other pathways, our model can potentially be used to identify important disease genes through sensitivity analysis of signalling components. This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information. In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.. To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

SUBMITTER: Xiaona Wei  

PROVIDER: MODEL1102210000 | BioModels | 2005-01-01

REPOSITORIES: BioModels

altmetric image

Publications

An integrated mathematical model of thrombin-, histamine-and VEGF-mediated signalling in endothelial permeability.

Wei X N XN   Han B C BC   Zhang J X JX   Liu X H XH   Tan C Y CY   Jiang Y Y YY   Low B C BC   Tidor B B   Chen Y Z YZ  

BMC systems biology 20110715


<h4>Background</h4>Endothelial permeability is involved in injury, inflammation, diabetes and cancer. It is partly regulated by the thrombin-, histamine-, and VEGF-mediated myosin-light-chain (MLC) activation pathways. While these pathways have been investigated, questions such as temporal effects and the dynamics of multi-mediator regulation remain to be fully studied. Mathematical modeling of these pathways facilitates such studies. Based on the published ordinary differential equation models  ...[more]

Similar Datasets

2006-01-20 | E-MEXP-477 | biostudies-arrayexpress
2017-08-22 | PXD004264 | Pride
2015-05-26 | E-GEOD-63283 | biostudies-arrayexpress
2015-05-26 | GSE63283 | GEO
2021-04-01 | GSE171228 | GEO
2014-02-06 | PXD000597 | Pride
2011-11-04 | E-GEOD-33449 | biostudies-arrayexpress
2011-11-04 | GSE33449 | GEO
2023-03-08 | GSE226605 | GEO
2014-01-01 | E-GEOD-43788 | biostudies-arrayexpress