Project description:Insects feeding on the nutrient-poor diet of xylem plant sap generally bear two microbial symbionts that are localized to different organs (bacteriomes) and provide complementary sets of essential amino acids (EAAs). Here, we investigate the metabolic basis for the apparent paradox that xylem-feeding insects are under intense selection for metabolic efficiency but incur the cost of maintaining two symbionts for functions mediated by one symbiont in other associations. Using stable isotope analysis of central carbon metabolism and metabolic modeling, we provide evidence that the bacteriomes of the spittlebug Clastoptera proteus display high rates of aerobic glycolysis, with syntrophic splitting of glucose oxidation. Specifically, our data suggest that one bacteriome (containing the bacterium Sulcia, which synthesizes seven EAAs) predominantly processes glucose glycolytically, producing pyruvate and lactate, and the exported pyruvate and lactate is assimilated by the second bacteriome (containing the bacterium Zinderia, which synthesizes three energetically costly EAAs) and channeled through the TCA cycle for energy generation by oxidative phosphorylation. We, furthermore, calculate that this metabolic arrangement supports the high ATP demand in Zinderia bacteriomes for Zinderia-mediated synthesis of energy-intensive EAAs. We predict that metabolite cross-feeding among host cells may be widespread in animal-microbe symbioses utilizing low-nutrient diets.
Project description:Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD(+) levels in gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD(+) balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima.
Project description:BackgroundThe liver plays a major role in metabolism and performs a number of vital functions in the body. Therefore, the determination of hepatic metabolite dynamics and the analysis of the control of the respective biochemical pathways are of great pharmacological and medical importance. Extra- and intracellular time-series data from stimulus-response experiments are gaining in importance in the identification of in vivo metabolite dynamics, while dynamic network models are excellent tools for analyzing complex metabolic control patterns. This is the first study that has been undertaken on the data-driven identification of a dynamic liver central carbon metabolism model and its application in the analysis of the distribution of metabolic control in hepatoma cells.ResultsDynamic metabolite data were collected from HepG2 cells after they had been deprived of extracellular glucose. The concentration of 25 extra- and intracellular intermediates was quantified using HPLC, LC-MS-MS, and GC-MS. The in silico metabolite dynamics were in accordance with the experimental data. The central carbon metabolism of hepatomas was further analyzed with a particular focus on the control of metabolite concentrations and metabolic fluxes. It was observed that the enzyme glucose-6-phosphate dehydrogenase exerted substantial negative control over the glycolytic flux, whereas oxidative phosphorylation had a significant positive control. The control over the rate of NADPH consumption was found to be shared between the NADPH-demand itself (0.65) and the NADPH supply (0.38).ConclusionsBased on time-series data, a dynamic central carbon metabolism model was developed for the investigation of new and complex metabolic control patterns in hepatoma cells. The control patterns found support the hypotheses that the glucose-6-phosphate dehydrogenase and the Warburg effect are promising targets for tumor treatment. The systems-oriented identification of metabolite dynamics is a first step towards the genome-based assessment of potential risks posed by nutrients and drugs.
Project description:Obligate intracellular pathogens satisfy their nutrient requirements by coupling to host metabolic processes, often modulating these pathways to facilitate access to key metabolites. Such metabolic dependencies represent potential targets for pathogen control, but remain largely uncharacterized for the intracellular protozoan parasite and causative agent of Chagas disease, Trypanosoma cruzi. Perturbations in host central carbon and energy metabolism have been reported in mammalian T. cruzi infection, with no information regarding the impact of host metabolic changes on the intracellular amastigote life stage. Here, we performed cell-based studies to elucidate the interplay between infection with intracellular T. cruzi amastigotes and host cellular energy metabolism. T. cruzi infection of non-phagocytic cells was characterized by increased glucose uptake into infected cells and increased mitochondrial respiration and mitochondrial biogenesis. While intracellular amastigote growth was unaffected by decreased host respiratory capacity, restriction of extracellular glucose impaired amastigote proliferation and sensitized parasites to further growth inhibition by 2-deoxyglucose. These observations led us to consider whether intracellular T. cruzi amastigotes utilize glucose directly as a substrate to fuel metabolism. Consistent with this prediction, isolated T. cruzi amastigotes transport extracellular glucose with kinetics similar to trypomastigotes, with subsequent metabolism as demonstrated in 13C-glucose labeling and substrate utilization assays. Metabolic labeling of T. cruzi-infected cells further demonstrated the ability of intracellular parasites to access host hexose pools in situ. These findings are consistent with a model in which intracellular T. cruzi amastigotes capitalize on the host metabolic response to parasite infection, including the increase in glucose uptake, to fuel their own metabolism and replication in the host cytosol. Our findings enrich current views regarding available carbon sources for intracellular T. cruzi amastigotes and underscore the metabolic flexibility of this pathogen, a feature predicted to underlie successful colonization of tissues with distinct metabolic profiles in the mammalian host.
Project description:Viruses can manipulate the host metabolism to achieve optimal replication conditions, and central carbon metabolism (CCM) pathways are often crucial in determining viral infections. Feline calicivirus (FCV), a diminutive RNA viral agent, induces upper respiratory tract infections in feline hosts, with highly pathogenic strains capable of precipitating systemic infections and subsequent host cell necrosis, thereby presenting a formidable challenge to feline survival and protection. However, the relationship between FCV and host cell central carbon metabolism (CCM) remains unclear, and the precise pathogenic mechanisms of FCV are yet to be elucidated. Upon FCV infection of Crandell-Rees Feline Kidney (CRFK) cells, an enhanced cellular uptake of glucose and glutamine was observed. Metabolomics analyses disclosed pronounced alterations in the central carbon metabolism of the infected cells. FCV infection was found to augment glycolytic activity while sustaining the tricarboxylic acid (TCA) cycle flux, with cellular ATP levels remaining invariant. Concurrently, both glutamine metabolism and the flux of the pentose phosphate pathway (PPP) were noted to be intensified. The application of various inhibitory agents targeting glycolysis, glutamine metabolism, and the PPP resulted in a significant suppression of FCV proliferation. Experiments involving glucose and glutamine deprivation demonstrated that the absence of either nutrient markedly curtailed FCV replication. Collectively, these findings suggest a critical interplay between central carbon metabolism and FCV proliferation. FCV infection stimulates CRFK cells to augment glucose and glutamine uptake, thereby supplying the necessary metabolic substrates and energy for viral replication. During the infection, glutamine emerges as the primary energy substrate, ensuring ATP production and energy homeostasis, while glucose is predominantly channeled into the pentose phosphate pathway to facilitate nucleotide synthesis.