Transcription profiling of mouse skeletal muscle gene expression by synthetic drugs and exercise
Ontology highlight
ABSTRACT: Exercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown. We measured global skeletal muscle expression in sedentary and exercised mice treated with vehicle or PPARdelta ligand GW1516. PPARdelta is a transcriptional regulator of muscle oxidative metabolism and fatigue resistance. Experiment Overall Design: Sedentary and exercise trained C57Bl/6J mice were treated with vehicle or GW1516 for 4 weeks, followed by collection of quadriceps for gene expression analysis.
Project description:Exercise training increases endurance by inducing global gene expression changes in skeletal muscles. The extent to which the genetic effects of exercise can be mimicked by synthetic drugs is unknown. We measured global skeletal muscle expression in sedentary and exercised mice treated with vehicle or PPARdelta ligand GW1516. PPARdelta is a transcriptional regulator of muscle oxidative metabolism and fatigue resistance. Keywords: Pharmacology study
Project description:Exercise activates serine/threonine kinase AMPK and transcriptional factor PPARdelta that re-model metabolism and endurance capacity of skeletal muscle. Whether and how synthetic activation of these molecules regulated muscle gene signature is unknown. We have conducted skeletal muscle microarrays from mice treated with AMPK agoinst (AICAR), PPARdelta agonist (GW1516) or the combination of the two drugs to investigate the individual and interactive effects of the two on muscle genes. Experiment Overall Design: C57Bl/6J mice were treated with Vehicle, AICAR, GW1516 and the combination of two drugs for 6 days, followed by collection of quadriceps for gene expression analysis.
Project description:Consequence of physical exercise in skeletal muscle was investigated in C57BL/6 mice after 4 weeks of exercise training and compared to sedentary controls. Exercised mice received four 4 weeks of regular exercise training on a motorized treadmill and were compared to sedentary controls. 6 mice of each Treatment were used to extract RNA from the quadriceps muscle three hours after the last training bout
Project description:Unconditioned thoroughbred geldings were exercised to maximal heart rate or fatigue on an equine high-speed treadmill. Skeletal muscle biopsies were taken from the middle gluteal muscle before, immediately after and four hours after exercise.
Project description:Unconditioned thoroughbred geldings were exercised to maximal heart rate or fatigue on an equine high-speed treadmill. Skeletal muscle biopsies were taken from the middle gluteal muscle before, immediately after and four hours after exercise. Three-condition experiment, Pre exercise (T0), Immediately post exercise (T1), 4 hours post exercise (T2). Hybridisations: T0 vs T1, T0 vs T2 Biological replicates: 8 Technical replication Dye swap
Project description:This SuperSeries is composed of the following subset Series:; GSE11803: Regulation of skeletal muscle gene expression by synthetic drugs and exercise; GSE11804: Pharmacological regulation of skeletal muscle gene expression Experiment Overall Design: Refer to individual Series
Project description:The adaptation of regimented exercise in skeletal muscle including muscular hypertrophy and enhanced strength decline significantly with aging. Transcriptome analysis following RNA sequencing reveals extensive activation of hypoxia-related genes in young exercised mice versus the sedentary, but absent in aged exercised mice. Particularly, less expression of aryl hydrocarbon receptor translocator (ARNT) was observed in response to exercise in aged mice. Young mice underwent skeletal muscle-specific knockout of ARNT (ARNT mKO) obtain deficient benefit from exercise resembling the aged mice. The deletion of ARNT associated with decreased expression of Notch1 intracellular domain(N1ICD) impair muscle hypertrophy and regeneration. Administration of ML228, a systematic agonist of ARNT, rescued skeletal muscle adaptabilities in old mice, which was suppressed by administrating N1ICD inhibitor(DAPT). These results suggest that the loss of skeletal muscle ARNT is partially responsible for diminished response to exercise in aging and activation of hypoxia signaling holds promise for rescuing the adaptability in aged muscle.
Project description:Aging is associated with mitochondrial dysfunction and insulin resistance. We conducted a study to determine the role of long-term vigorous endurance exercise on age-related changes in insulin sensitivity and various indices of mitochondrial functions. Experiment Overall Design: Skeletal muscle transcript profiling was done using Vastus Lateralis muscle biopsy samples from 10 young sedentary (YS), 10 older sedentary (OS), 10 young trained (YT) and 10 older trained (OT) men and women. Note that YT2, YS1, and OT1 didn't pass the Quality Control Step of dChip (high array/single outliers). Sedentary subjects exercised less than 30 min/day, twice per week. Trained subjects performed ⥠1 hour cycling or running 6 days/week over the past 4 years.
Project description:We performed the circadian transcriptome analysis using the skeletal muscle from sedentary and exercised mice either in the early rest phase (ZT3) or in the early active phase (ZT15). By the combination with circadian transcriptomic and metabolomic analysis, we revealed time-of-day-dependent remodeling of circadian muscular metabolic pathways involved in glucose and glycerol metabolism after exercise. We found that only exercise in the early active phase elevates the levels of genes encoding glycolytic enzymes followed by the activation of fatty acid oxidation, branched-chain amino acid catabolism and ketogenesis/ketosis. This study demonstrates that time-of-day is a critical factor to modulate the impact of exercise on metabolic pathways within skeletal muscle.
Project description:NAD is an obligate co-factor for the catabolism of metabolic fuels in all cell types. However, the availability of NAD in several tissues can become limited during genotoxic stress and the course of natural aging. The point at which NAD restriction imposes functional limitations on tissue physiology remains unknown. We examined this question in murine skeletal muscle by specifically depleting Nampt, an essential enzyme in the NAD salvage pathway. Knockout mice exhibited a dramatic 85% decline in intramuscular NAD content, accompanied by fiber degeneration and progressive loss of both muscle strength and treadmill endurance. Administration of the NAD precursor nicotinamide riboside rapidly ameliorated functional deficits and restored muscle mass, despite having only a modest effect on the intramuscular NAD pool. Additionally, lifelong overexpression of Nampt preserved muscle NAD levels and exercise capacity in aged mice, supporting a critical role for tissue-autonomous NAD homeostasis in maintaining muscle mass and function. Messenger RNA was isolated from quadriceps muscle of mice from three different age groups and three different genotypes. Wildtype mice were aged 4, 7, and 24 months. Mice deficient for Nampt in skeletal muscle (mNKO) were aged 7 months. Mice overexpressing Nampt in skeletal muscle were aged 4 and 24 months.