ShRNA profiling of human DZNep-treated glioblastoma multiforme cancer stem cells
Ontology highlight
ABSTRACT: Overexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management. Experiment Overall Design: Three samples of cancer stem-cell enriched gliospheres from primary glioblastoma multiforme cell cultures were treated with DZNep. Untreated gliospheres from the same cultures were used as controls.
Project description:Overexpression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) occurs in diverse malignancies, including prostate cancer, breast cancer, and glioblastoma multiforme (GBM) (1). Based on its ability to modulate transcription of key genes implicated in cell cycle control, DNA repair and cell differentiation, EZH2 is believed to play a crucial role in tissue-specific stem cell maintenance and tumor development. Here we show that targeted pharmacologic disruption of EZH2 by the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep), or its specific down-regulation by shRNA, strongly impairs GBM cancer stem cell self-renewal in vitro and tumor-initiating capacity in vivo. Using genome-wide expression analysis of DZNep-treated GBM cancer stem cells, we found the expression of c-myc, recently reported to be essential for GBM cancer stem cells, to be strongly repressed upon EZH2 depletion. Specific shRNA-mediated down-regulation of EZH2 in combination with chromatin immunoprecipitation (ChIP) experiments revealed that c-myc is a direct target of EZH2 in GBM cancer stem cells. Taken together, our observations provide evidence that direct transcriptional regulation of c-myc by EZH2 may constitute a novel mechanism underlying GBM cancer stem cell maintenance and suggest that EZH2 may be a valuable new therapeutic target for GBM management.
Project description:<p>We used massively parallel, paired-end sequencing of expressed transcripts (RNA-seq) to detect novel gene fusions in short-term cultures of glioma stem-like cells freshly isolated from nine patients carrying primary glioblastoma multiforme (GBM). The culture of primary GBM tumors under serum-free conditions selects cells that retain phenotypes and genotypes closely mirroring primary tumor profiles as compared to serum-cultured glioma cell lines that have largely lost their developmental identities.</p>
Project description:The purpose of this study is to determine whether the combination of two agents, INC280 and bevacizumab, is safe and effective when administered to patients with Glioblastoma Multiforme (GBM) who have progressed after receiving prior therapy or who have unresectable GBM.
Project description:Glioblastoma multiforme (GBM) is a highly malignant brain cancer, and microglial cells play a critical role in its progression. Activation of microglia can either promote or inhibit GBM growth depending on the stage of tumour development and on the microenvironment. As current treatments for GBM have limited efficacy, there is an urgent need to develop novel strategies based on nanoplatforms for drug delivery and efficient targeting. This study investigated the microglial response and the therapeutic efficacy of dual cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoplatelets, tested on human microglia and GBM cells. The results showed promising therapeutic effects on glioma cells and an M2 microglia polarization, highlighted through proteomic analysis.
Project description:glioblastoma multiforme genomic profiling by single nucleotide polymorphism microarray<br><br>Human GBM (glioblastoma multiforme)cell lines (U87, U118, U138, U343, U373, T98G) were maintained in Dulbecco's modified Eagle's medium with 10 % fetal calf serum, 10 U/ml penicillin-G, and 10 mg/ml streptomycin. All cells were incubated at 37 oC in 5% CO2.<br><br>Four primary GBM explants were established from patients with glioblastoma multiforme undergoing surgery as following described: Tumor specimens were immediately transported to the laboratory, finely minced to single cell suspension and cultured in complete medium [Ham's F-12/DME High Glucose medium containing 10% fetal calf serum, 10 U/ml penicillin-G, and 10 mg/ml streptomycin and 2 mM glutamax-1 into 100 cm2 tissue culture plastic dishes the second passage. All cells were incubated at 37 oC in 5% CO2.<br><br>GBM (glioblastoma multiforme) tissue samples were quick frozen. <br><br>Standard proteinase K-phenol-chloroform extraction method was used to extract DNA from GBM samples, cell lines and explants.<br><br>The matched peripheral blood data can be used as normalized data for their matched tumor tissue data. <br><br>The cell lines samples and two explants without normalized data, but they can be normalized by one of the peripheral blood DNA data.
Project description:The paper describes a model of glioblastoma.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations
Kristen Abernathy and Jeremy Burke BMC
Computational and Mathematical Methods in Medicine Volume 2016, Article ID 1239861, 11 pages
Abstract:
Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:The recent incorporation of molecular features into the diagnosis of Glioblastoma Multiforme patients has led to an improved categorisation into different tumour subtypes with different prognosis and disease management. In this work, we have exploited the benefits of genome-wide multiomic approaches to identify potential molecular vulnerabilities existing on GBM patients. We used the Illumina MethylationEPIC Beadchip platform to describe the genome-wide 5mC and 5hmC DNA methylation landscape of a total of 9 patient-derived Glioblastoma Multiforme Cell lines obtained from the human glioblastoma cell culture resource (HGCC) and 4 brain samples obtained from non-tumoral controls
Project description:Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. PI3K/AKT/mTOR signaling pathway is activated in 90% of all Glioblastoma Multiforme (GBM) tumors. To gain insight into the impact of the PI3K Pathway on GBM metabolism, we treated U87MG GBM cells with 50nM NVP-BEZ235 (PI3K and mTOR a dual inhibitor) for four days and identified differentially expressed genes with RNA-seq analysis.
Project description:Human Glioblastoma Multiforme tumors taken before dendritic cell vaccination, the recurrent tumors taken after vaccination and control GBM tumors from non vaccinated patients. Experiment Overall Design: Six Glioblastoma Multiforme patients underwent surgery. Their brain tumors were removed and analyzed via microarray. The lysate from the tumors were cultured with the patients' dendritic cells and the DCs were injected back into the patients. The patients GBMs returned and they underwent surgery a second time and those tumors were also analyzed via microarray. Tumors from the first and second GBM surgeries of 5 patients who did not receive DC vaccines are included as controls.