Arabidopsis thaliana young flowers: Wild type vs. sdg2-1 mutant
Ontology highlight
ABSTRACT: Transcriptional profiling in young flowers (stage 8) of Arabidopsis wild type control plants and sdg2-1 mutant is performed using Aligentâs Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K). A significant number of genes involved in gametophyte development are found differentially regulated in the sdg2-1 mutant. Two-condition experiment, young flowers of wild type control vs. young flowers of sdg2-1 mutant. Two biological replicates: 2 control, 2 mutant, independently grown and harvested. One replicate per array.
Project description:Transcriptional profiling in young flowers (stage 8) of Arabidopsis wild type control plants and sdg2-1 mutant is performed using Aligent’s Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K). A significant number of genes involved in gametophyte development are found differentially regulated in the sdg2-1 mutant.
Project description:Transcriptional profiling in open flowers of Arabidopsis wild type control plants and sdg4 mutant (SALK T-DNA line_128444). The sdg4 mutant is a Arabidopsis T-DNA mutant in which T-DNA is inserted in a SET domain protein, SDG4 (At4g30860). Expression profiling studies indicate that SDG4 might function in modulating the expression of the genes that function in the growth of pollen tubes. Keywords: epigenetic modification
Project description:The nascent polypeptide-associated (NAC) complex was described in yeast as a heterodimer composed of two subunits, α and β, and was shown to bind to the nascent polypeptides newly emerging from the ribosome. Although NAC function was widely described in yeast, less is known about its role in plants. The knock down of individual NAC subunit(s) led usually to a higher sensitivity to stress. In Arabidopsis thaliana genome, there are five genes coding for NACα subunit, and two genes coding for NACβ. Double homozygous mutant in both genes coding for NACβ was acquired, which showed a delayed development compared to the wild type, had abnormal number of flower organs, shorter siliques and greatly reduced seed set. Herein, both NACβ genes were characterized by complementation analysis, overexpression, subcellular localization, and promoter analysis. Since flowers were the most affected organs by nacβ mutation, the flower buds transcriptome was identified by RNA sequencing, and their proteome by gel-free approach. The differential expression analyses of transcriptomic and proteomic datasets suggest the involvement of NACβ subunits in stress responses and male gametophyte development.
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control seedlings with corresponding mutant seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:Transcriptional profiling of Arabidopsis wild-type (Col0) control flower buds or seedlings with corresponding mutant flower buds or seedlings is performed using Aligent's Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K).
Project description:The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, sterile perianth organs surrounding stamens (male reproductive organs) and carpels (female reproductive organs) constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure, of floral organs, while the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. As such, regulatory mechanisms underlying the archetypal floral plan, for instance that of the eudicot genetic model Arabidopsis thaliana, are unlikely to apply to the original flowers. Here we show that broadly overlapping transcriptional programs characterise the floral transcriptome of the basal angiosperm Persea americana (avocado), while floral gene expression domains are typically organ-specific in Arabidopsis. Our findings extend the “fading borders” model for basal angiosperms from organ identity genes to the downstream floral transcriptome, and suggest that the combinatorial mechanism for organ identity may not operate in basal angiosperms as it does in Arabidopsis. Furthermore, fading expression of components of the stamen transcriptome in central and peripheral regions of Persea flowers resembles the developmental program of the hypothesized gymnosperm “floral progenitor”. Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs.
Project description:To understand the role of Arabidopsis histone deacetylase HDA6 in drought tolerance, we have employed transcriptional profiling of the hda6 mutant and its parental line under drought and control conditions to identify genes differentially expressed in the hda6 mutant under drought and control conditions. Aligent's Whole Arabidopsis Gene Expression Microarray (Agilent-015059, G2519F, V3, 4x44K) was used.
Project description:To understand the role of Arabidopsis histone deacetylase HDA6 in plant cold acclimation, we have employed transcriptional profiling of the hda6 mutant and its parental line under cold and control conditions to identify genes differentially expressed in the hda6 mutant under cold and control conditions. Aligent’s Whole Arabidopsis Gene Expression Microarray (G2519F, V4, 4x44K) were used.
Project description:The debate on the origin and evolution of flowers has recently entered the field of developmental genetics, with focus on the design of the ancestral floral regulatory program. Flowers can differ dramatically among angiosperm lineages, but in general, sterile perianth organs surrounding stamens (male reproductive organs) and carpels (female reproductive organs) constitute the basic floral structure. However, the basal angiosperm lineages exhibit spectacular diversity in the number, arrangement, and structure, of floral organs, while the evolutionarily derived monocot and eudicot lineages share a far more uniform floral ground plan. As such, regulatory mechanisms underlying the archetypal floral plan, for instance that of the eudicot genetic model Arabidopsis thaliana, are unlikely to apply to the original flowers. Here we show that broadly overlapping transcriptional programs characterise the floral transcriptome of the basal angiosperm Persea americana (avocado), while floral gene expression domains are typically organ-specific in Arabidopsis. Our findings extend the âfading bordersâ model for basal angiosperms from organ identity genes to the downstream floral transcriptome, and suggest that the combinatorial mechanism for organ identity may not operate in basal angiosperms as it does in Arabidopsis. Furthermore, fading expression of components of the stamen transcriptome in central and peripheral regions of Persea flowers resembles the developmental program of the hypothesized gymnosperm âfloral progenitorâ. Accordingly, in contrast to the canalized organ-specific regulatory apparatus of Arabidopsis, floral development may have been originally regulated by overlapping transcriptional cascades with fading gradients of influence from focal to bordering organs. Expression profiles of inflorescence buds, pre-meiotic floral buds, inner and outer tepals, stamens, carpels, initiating fruit, and leaves were assessed in an interwoven double loop design for eight samples with 16 arrays. Sample materials were collected from two individuals (biological replicates) cultivated on the University of Floridaâs Gainesville campus, and RNA was isolated twice for technical replication. Thus, four RNA extractions from each of the eight tissue types listed above were individually labeled with Cy3 (twice) or Cy5 (twice) and hybridized with four other Cy3 or Cy5 labeled samples as a dual channel array system.