Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cell phenotypes.


ABSTRACT: The eukaryotic cytoplasmic chaperonin-containing TCP-1 (CCT) is a complex formed by two back-to-back stacked hetero-octameric rings that assists the folding of actins, tubulins and other proteins in an ATP-dependent manner. Here, we decided to test the significance of the hetero-oligomeric nature of CCT for its function by introducing, in each of the eight subunits in turn, an identical mutation at a position involved in ATP binding and conserved in all the subunits, in order to establish the extent of ‘individuality’ of the various subunits. Our results show that these identical mutations lead to dramatically different phenotypes. For example, cells with the mutation in CCT2 have an excess of actin patches and are the only pseudo-diploid strain. By contrast, cells with the mutation in CCT7 are the only ones to accumulate juxta-nuclear protein aggregates that may reflect the absence of stress response in this strain. System-level analysis of the strains using RNA microarrays reveals connections between CCT and several cellular networks including ribosome biogenesis and TOR2 that help to explain the phenotypic variability observed We used microarrays to reveal the differences in mRNA expression caused by the different mutations. All yeast strains were grown at 30 °C to OD(600)=0.5. Their total RNA was extracted and reverse transcribed to cDNA and transcribed back to RNA in the presence of biotinylated nucleotide analog. The biotinylated RNA was fragmented and hybridized to GenCHip Yeast Genome 2.0 array.

ORGANISM(S): Saccharomyces cerevisiae

SUBMITTER: Amnon Horovitz 

PROVIDER: E-GEOD-19511 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

Similar Datasets

2010-07-01 | GSE19511 | GEO
2019-08-20 | GSE135995 | GEO
2023-07-26 | PXD042773 | Pride
2019-08-20 | GSE135994 | GEO
2021-07-02 | PXD024191 | Pride
2023-03-22 | GSE225161 | GEO
2012-11-21 | E-MEXP-3446 | biostudies-arrayexpress
2021-02-17 | GSE166843 | GEO
2022-07-16 | GSE207955 | GEO
| PRJNA122333 | ENA