Metabolomics,Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Timecourse analysis of gene expression by murine bone marrow-generated dendritic cells following treatment with Poly I:C


ABSTRACT: BACKGROUND: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Statistical methods and averaging are often used to identify significant signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent signals between the replicates, is presented and applied to a DC time course microarray experiment. RESULTS: The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold change techniques, along with the consistency of replicate temporal profiles, to identify those differentially expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many known and novel characteristics of DC maturation, such as the up-regulation of specific immune response pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and housekeeping needed for maintenance of cellular integrity and metabolism. CONCLUSIONS: The new filtering strategy emphasizes the importance of consistent and reproducible results when analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale time course data sets with replicates. DC were generated from the bone marrow of C57BL/6 mice using GM-CSF, Treated with poly I:C, and RNA was isolated at 0, 1, 3, 6, 12 and 24 hours, and subjected to microarray analysis. Two independent replicate experiments were performed.

ORGANISM(S): Mus musculus

SUBMITTER: Elizabeth Hiltbold-Schwartz 

PROVIDER: E-GEOD-21033 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Dynamics of dendritic cell maturation are identified through a novel filtering strategy applied to biological time-course microarray replicates.

Olex Amy L AL   Hiltbold Elizabeth M EM   Leng Xiaoyan X   Fetrow Jacquelyn S JS  

BMC immunology 20100803


<h4>Background</h4>Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics of DC maturation would provide key insights into this important process. Time course microarray experiments can provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of experimental and biological variability. Sta  ...[more]

Similar Datasets

2010-08-26 | GSE21033 | GEO
2009-01-29 | GSE10316 | GEO
2021-04-08 | GSE159143 | GEO
2006-06-02 | GSE4917 | GEO
2005-12-01 | GSE2397 | GEO
2017-11-01 | GSE96628 | GEO
2017-11-27 | PXD003738 | Pride
2007-10-06 | GSE9241 | GEO
2009-04-01 | E-GEOD-13418 | biostudies-arrayexpress
2013-05-03 | GSE39745 | GEO