Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion
Ontology highlight
ABSTRACT: Zinc deficiency is detrimental to organisms highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within zebrafish gill. This tissue represents a model system for studying ion absorption across polarised cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array. Global transcript levels were measured in zebrafish gills using a oligonucleotide array either zinc-depleted or zinc-adequate diet. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array
Project description:Dietary zinc is routinely supplemented to promote growth, boost the immune system, protect against diabetes or aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio) gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Fish were maintained with zinc supplemented water (4.0 uM) and diet (2023 mg zinc kg-1) or in un-amended water and diet, containing Zn2+ at 0.25 µM and 233 mg zinc kg-1 respectively. Gill tissues were harvested at five time points (8 hours to 14 days) and transcriptome changes analysed in quintuplicate using a 16K microarray. Global transcript levels were measured in zebrafish gills using a oligonucleotide array either zinc-adequate or zinc-supplemented diet. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array
Project description:This SuperSeries is composed of the following subset Series: GSE21894: Dynamic transcriptomic profiles of zebrafish gills in response to zinc depletion GSE21907: Dynamic transcriptomic profiles of zebrafish gills in response to zinc supplementation. Refer to individual Series
Project description:Amoebic gill disease (AGD) is an ectoparasitic condition of some farm-reared marine fish and is caused by Neoparamoeba perurans. Tanks housing Atlantic salmon (Salmo salar) were inoculated with Neoparamoeba perurans and fish were sampled at 36 days postinoculation (pi.). AGD-affected gill tissue was dissected from N. perurans infected fish, and a DNA microarray was used to compare global gene expression against tissues from AGD-naive fish. To determine whether the changes in gene expression were restricted to AGD-lesions, lesion tissue from AGD-affected fish was also compared with non-lesion gill tissue dissected from the same gill arch. Samples were assessed using a DNA microarray. mRNA from lesion and non-lesion gill tissue was amplified and labeled. Six biological and two technical replicates were utilised to hybridise to 12 arrays using amplified RNA from AGD-affected lesion gill tissue with AGD-naive fish as a control. Four biological and two technical replicates were utilised to hybridise to 8 arrays using amplified RNA from AGD-affected lesion gill tissue with non-lesion tissue from the same gill arch as a control. The assignment of microarrays to treatment groups for hybridization was randomised by using a random number generator.
Project description:Fish gills are not only the respiratory organ, but also essential for ion-regulation, acid-base control, detoxification, waste excretion and host defense. Multifactorial gill diseases are common in farmed Atlantic salmon, and still poorly understood. Understanding gill pathophysiology is of paramount importance, but the sacrifice of large numbers of experimental animals for this purpose should be avoided. Therefore, in vitro models, such as cell lines, are urgently required to replace fish trials. An Atlantic salmon gill epithelial cell line, ASG-10, was established at the Norwegian Veterinary institute in 2018. This cell line forms a monolayer expressing cytokeratin, e-cadherin and desmosomes, hallmarks of a functional epithelial barrier. To determine the value of ASG-10 for comparative studies of gill functions, the characterization of ASG-10 was taken one step further by performing functional assays and comparing the cell proteome and transcriptome with those of gills from juvenile freshwater Atlantic salmon. The ASG-10 cell line appear to be a homogenous cell line consisting of epithelial cells, which express tight junction proteins. We demonstrated that ASG-10 forms a barrier, both alone and in co-culture with the Atlantic salmon gill fibroblast cell line ASG- 13. ASG-10 cells can phagocytose and express several ATP-binding cassette transport proteins. Additionally, ASG-10 expresses genes involved in biotransformation of xenobiotics and immune responses. Taken together, this study provides an overview of functions that can be studied using ASG-10, which will be an important contribution to in vitro gill epithelial research of Atlantic salmon.
Project description:Transcriptomic profiling of Pseudomonas fluorescens Pf-5 comparing zinc-limited culture against zinc-amended culture in M9 minimal media Two-condition experiment, non-zinc treated culture versus zinc sulphate supplemented culture. 3 biological replicates including 3 technical replicates for one of the biological replicate and 2 technical replicates for another biological replicate. Swap-dye experiments were performed
Project description:Dietary zinc is routinely supplemented to promote growth, boost the immune system, protect against diabetes or aid recovery from diarrhoea. We exploited the zebrafish (Danio rerio) gill as a unique vertebrate ion transporting epithelium model to study the time-dependent regulatory networks of gene-expression leading to homeostatic control during zinc supplementation. This organ forms a conduit for zinc uptake whilst exhibiting conservation of zinc trafficking components. Fish were maintained with zinc supplemented water (4.0 uM) and diet (2023 mg zinc kg-1) or in un-amended water and diet, containing Zn2+ at 0.25 µM and 233 mg zinc kg-1 respectively. Gill tissues were harvested at five time points (8 hours to 14 days) and transcriptome changes analysed in quintuplicate using a 16K microarray.
Project description:Zinc deficiency is detrimental to organisms highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within zebrafish gill. This tissue represents a model system for studying ion absorption across polarised cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array.
Project description:To identify genes involved in the developmental process of Atlantic salmon smoltification, gene expression was compared between smolt and parr in tissues involved in osmoregulation (gill), metabolism (liver), imprinting (olfactory rosettes) and neuroendocrine control (hypothalamus and pituitary). Tissue samples were harvested from laboratory-reared parr and smolts on the same date. Smolts were distinguished from parr by size and appearance; developmental status was confirmed by physiological assays. Eight biological replicates (16 fish) balanced for sex and for dye were used in the liver, gill, olfactory rosette, and hypothalamus comparisons. Four male parr were compared to four male smolts and four female parr were compared to four female smolts; smolts were labeled with Alexa Fluor 555 on four arrays and with Alexa Fluor 647 on four arrays. Six biological replicates (12 fish) were used for the pituitary comparison (two female and four male).
Project description:Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of Atlantic salmon smolts treated with nonylphenol compared to control smolts. Nonylphenol treatment was confirmed using physiological assays: nonylphenol-treatment significantly decreased gill Na+,K+-ATPase activity and plasma cortisol and T3 levels. Microarray analyses were used to compare expression in nonylphenol-injected fish with expression in vehicle-injected fish: eight arrays each for liver, gill, olfactory rosettes, hypothalamus, and pituitary tissues. Total RNA was isolated from the tissues of eight nonylphenol-injected fish (six males and two females) and eight vehicle-injected fish (two males and six females) and reverse transcribed separately (not pooled); each slide represents a biological replicate. For each tissue, the eight arrays were balanced for dye: nonylphenol-injected fish were labeled with Alexa Fluor 555 and vehicle-injected fish were labeled with Alexa Fluor 647 on four slides, nonylphenol-injected fish were labeled with Alexa Fluor 647 and vehicle-injected fish were labeled with Alexa Fluor 555 on four slides. Liver, gill, hypothalamus, pituitary, and olfactory rosette tissues were analyzed separately.
Project description:This study investigates changes in gene expression associated with adaptation to acute hyper- and hypoosmotic stress in Gillichthys mirabilis gill tissue. Gene expression data was captured as a time course (1, 2, 4, 12 hours past exposure) during the first 12 hours following abrupt transfer to osmotic stress media. We employed a custom made Gillichthys mirabilis cDNA microarray. A total of 39 arrays were used in this study: 12 hyperosmotic stress samples, 12 hypoosmotic stress samples, 12 control samples, and 3 time=0 samples. Three individuals were hybridized at each of the four time points (1, 2, 4, 12 hours past exposure) for experimental and control fish (giving a total of 12). All samples were hybridized against a common reference sample containing pooled cDNAs from several individuals.