Genome-wide expression analysis comparing SKOV3ip1 and the taxane-resistant SKOV3TRip2
Ontology highlight
ABSTRACT: We sought to compare mRNA expression profiles between the parental SKOV3ip1 and taxane-resistant SKOV3TRip2 in order to determine what genes are mediating taxane resistance 3 separate collections of each cell line were made, with cells at 75-80% confluence growing on 2-dimentional culture plates, and RNA extracted with RNAeasy kit Authors were unable to retrieve raw data.
Project description:Members of the NADPH oxidase (NOX) family of enzymes, which catalyze the reduction of O2 to reactive oxygen species, have increased in number during eukaryotic evolution. Seven isoforms of the NOX gene family have been identified in mammals; however, specific roles of NOX enzymes in mammalian physiology and pathophysiology have not been fully elucidated. The best established physiological role of NOX enzymes is in host defense against pathogen invasion in diverse species, including plants. The prototypical member of this family, NOX-2 (gp91phox), is expressed in phagocytic cells and mediates microbicidal activities. Here we report a role for the NOX4 isoform in tissue repair functions of myofibroblasts and fibrogenesis. Transforming growth factor-β1 (TGF-β1) induces NOX-4 expression in lung mesenchymal cells by a SMAD-3–dependent mechanism. NOX-4–dependent generation of hydrogen peroxide (H2O2) is required for TGF-β1–induced myofibroblast differentiation, extracellular matrix (ECM) production and contractility. NOX-4 is upregulated in lungs of mice subjected to noninfectious injury and in cases of human idiopathic pulmonary fibrosis (IPF). Genetic or pharmacologic targeting of NOX-4 abrogates fibrogenesis in two murine models of lung injury. These studies support a function for NOX4 in tissue fibrogenesis and provide proof of concept for therapeutic targeting of NOX-4 in recalcitrant fibrotic disorders. Experiment Overall Design: mRNA expression of genes in human fetal lung mesenchymal cells (IMR-90) treated with or without TGF-β1, as analyzed by Affymetrix (U133A) microarrays. Control (C0, C2, C3) = cells without TGF-β1 treatment (n=3). Experimental (T0, T5, T7) = cells treated with TGF-β1 (2ng/ml) (n=3). mRNA was collected for all 6 samples for 48 hours post treatment.
Project description:Purpose: Breast cancer is a genetically heterogenous disease with subtypes differing in prognosis and chemosensitivity. The basal-like breast cancer (BLBC) molecular subtype is associated with poorer outcomes, but is more responsive to taxane-based chemotherapy. We evaluated the role of kinesins, motor proteins interacting with microtubules, in influencing taxane resistance. Experimental Design: Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) nd the MDACC dataset (GSE20194) is separately detailed. Results: In the local dataset, the kinesin KIF26B is overexpressed in taxane-resistant residual breast cancers post-chemotherapy. Conclusions: We show that kinesin overexpression correlates with taxane resistance in BLBC cell lines and tissue. Our results suggest a potential approach to overcoming taxane resistance through concurrent or sequential use of kinesin inhibitors, highlighting the ATP-binding domain as a drug development target.
Project description:Purpose: Breast cancer is a genetically heterogenous disease with subtypes differing in prognosis and chemosensitivity. The basal-like breast cancer (BLBC) molecular subtype is associated with poorer outcomes, but is more responsive to taxane-based chemotherapy. We evaluated the role of kinesins, motor proteins interacting with microtubules, in influencing taxane resistance. Experimental Design: Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) nd the MDACC dataset (GSE20194) is separately detailed. Results: In the local dataset, the kinesin KIF26B is overexpressed in taxane-resistant residual breast cancers post-chemotherapy. Conclusions: We show that kinesin overexpression correlates with taxane resistance in BLBC cell lines and tissue. Our results suggest a potential approach to overcoming taxane resistance through concurrent or sequential use of kinesin inhibitors, highlighting the ATP-binding domain as a drug development target. Kinesin (KIF) expression was studied in one local dataset comprising all taxane resistant breast cancers in relation to taxane resistance. Data in the NCI-60 cell line dataset (GSE5846) and the MDACC dataset (GSE20194) is separately detailed.
Project description:We sought to compare mRNA expression profiles between the parental SKOV3ip1 and taxane-resistant SKOV3TRip2 in order to determine what genes are mediating taxane resistance
Project description:The development of taxane resistance remains a major challenge for castration resistant prostate cancer (CR-PCa), despite the effectiveness of taxanes in prolonging patient survival. To uncover novel targets, we performed an epigenetic drug screen on taxane (docetaxel and cabazitaxel) resistant CR-PCa cells. We identified BRPF reader proteins, along with several epigenetic groups (CBP/p300, Menin-MLL, PRMT5 and SIRT1) that act as targets effectively reversing the resistance mediated by ABCB1. Targeting BRPFs specifically resulted in the resensitization of resistant cells, while no such effect was observed on the sensitive compartment. These cells were successfully arrested at the G2/M phase of cell cycle and underwent apoptosis upon BRPF inhibition, confirming the restoration of taxane susceptibility. Pharmacological inhibition of BRPFs reduced ABCB1 activity, indicating that BRPFs may be involved in an efflux-related mechanism. Indeed, ChIP-qPCR analysis confirmed binding of BRPF1 to the ABCB1 promoter suggesting direct regulation of the ABCB1 gene at the transcriptional level. RNA-seq analysis revealed that BRPF1 knockdown affects the genes enriched in mTORC1 and UPR signaling pathways, revealing potential mechanisms underlying its functional impact, which is further supported by the enhancement of taxane response through the combined inhibition of ABCB1 and mTOR pathways, providing evidence for the involvement of multiple BRPF1-regulated pathways. Beyond clinical attributes (Gleason score, tumor stage, therapy outcome, recurrence), metastatic PCa databases further supported the significance of BRPF1 in taxane resistance, as evidenced by its upregulation in taxane-exposed PCa patients.
Project description:While taxane-platin standard chemotherapy provides benefit in advanced and localized non-small cell lung cancer (NSCLC), the majority of patients relapse with drug resistant tumors. Mechanisms underlying NSCLC resistance to this standard doublet chemotherapy are still not fully understood, and treatment options for chemoresistant lung tumors are limited. The goals of this work were to establish new preclinical NSCLC models of resistance to taxane-platin doublet chemotherapy, identify mechanisms of resistance, and develop new rational pharmacologic approaches to target drug resistant NSCLCs.
Project description:This SuperSeries is composed of the following subset Series: GSE25055: Discovery cohort for genomic predictor of response and survival following neoadjuvant taxane-anthracycline chemotherapy in breast cancer GSE25065: Validation cohort for genomic predictor of response and survival following neoadjuvant taxane-anthracycline chemotherapy in breast cancer Refer to individual Series
Project description:The purpose of the study was to assess the transcriptomic differences between taxane-resistant cell lines and parental control cells to identify drivers of resistance.
Project description:Characterization of gene expression changes upon development of taxane-platin drug resistance in NSCLC cells and further, upon treatment of these resistant cells with the Jumonji KDM inhibitor, GSK-J4.