Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome
Ontology highlight
ABSTRACT: Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or no H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction. Total nucleosomes from MNase-treated nuclear extracts were fractionated by sequential immunoprecipitation into homotypic H2A/H2A (AA), heterotypic H2A/H2A.Z (AZ), and homotypic H2A.Z/H2A.Z (ZZ) nucleosomes.
Project description:Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or no H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.
Project description:The site-specific chromatin incorporation of eukaryotic histone variant H2A.Z is driven by the multi-component chromatin remodeling complex SWR1/SRCAP/ p400. The budding yeast SWR1 complex replaces the H2A-H2B dimer in the canonical nucleosome with the H2A.Z-H2B dimer, but the mechanism governing the directionality of H2A-to-H2A.Z exchange remains elusive. Here, we use single-molecule force spectroscopy to dissect the disassembly/ reassembly of H2A-nucleosome and H2A.Z-nucleosome. We find that the N-terminal 1-135 residues of yeast SWR1-complex-protein-2 (previously termed Swc2-Z) facilitate the disassembly of nucleosomes containing H2A but not H2A.Z. The Swc2-mediated nucleosome disassembly/reassembly requires the inherently unstable H2A-nucleosome, whose instability is conferred by three H2A α2-helix residues Gly47, Pro49 and Ile63 as they selectively weaken the structural rigidity of H2A-H2B dimer. It also requires Swc2-ZN (residues 1-37) that directly anchors to H2A-nucleosome and functions in the SWR1-catalyzed H2A.Z replacement in vitro and yeast H2A.Z deposition in vivo. Our findings providecrucial insights into how SWR1 complex discriminates between the H2A-nucleosome and H2A.Z-nucleosome, establishing a simple paradigm for the governace of unidirectional H2A.Z exchange.
Project description:In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z.
Project description:genome wide location of H2A.Z binding sites in yeast Saccharomyces cerevisiae. Nucleosome density controled with H2B ChIP. Hybridization control ChIP H2AZ/H2AZ and H2A/H2B.
Project description:Histone modifications perform a vast array of functions in regulating gene expression, DNA replication, and repair. Monoubiquitination of histone H2B at K123 in yeast (K120 in humans) is an intriguing modification because it is deposited cotranscriptionally, mediates the installation of several other epigenetic marks, and then disappears; hence, it is associated transiently with actively transcribed chromatin. In yeast, the H2B ubiquitin writer is the E2/E3 pair Rad6/Bre1, and there are two deubiquitinases that can erase it, Ubp8 and Ubp10. Whilst Ubp8 resides within the larger SAGA complex, Ubp10 (USP36 in humans) is a monomeric and constitutively active deubiquitinase, raising questions as to what processes regulate it, given it would be undesirable for H2B to be deubiquitinated prematurely before downstream processes connected to this epigenetic mark occur. Here we show that Ubp10’s activity is regulated by acidic regions within its long N-terminal intrinsically disordered region (IDR), which extensively interact with H2A/H2B dimers, as shown by crosslinking mass spectrometry. These interactions vanish when H2A/H2B is present in nucleosomes. These observations explain why Ubp10 has low baseline activity on nucleosomes, but is activated by FACT, a histone chaperone which evicts H2A/H2B dimers from nucleosomes, thereby generating Ubp10’s preferred substrate, which we demonstrate with single molecule fluorescence experiments. Hence, this work provides a biophysical mechanism for how Ubp10 can provide a housekeeping function to deubiquitinate actively-transcribed DNA, wherein FACT produces a temporary pool of H2A/H2B dimers.
Project description:The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. While the multi-subunit SWR1 chromatin remodeling complex is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of di-nucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA adjoining core particles, allowing discrimination of gene promoters over gene bodies. We traced the critical DNA binding component of SWR1 to the conserved Swc2/YL1 subunit, whose activity is required for both SWR1 binding and H2A.Z incorporation in vivo. Histone acetylation by NuA4 enhances SWR1 binding, but the interaction with nucleosome-free DNA is the major determinant. ‘Hierarchical cooperation’ between high affinity DNA- and low affinity histone modification-binding factors may reconcile the large disparity in affinities for chromatin substrates, and unify classical control by DNA-binding factors with post-translational histone modifications and ATP-dependent nucleosome mobility. Swr1 TAP IF of various mutants
Project description:While it has been clearly established that well positioned H2A.Z-containing nucleosomes flank the nucleosome depleted region (NDR) at the transcriptional start site (TSS) of active mammalian genes, how this chromatin-based information is transmitted through the cell cycle is unknown. We show here that in trophoblast stem (TS) cells, the level of H2A.Z at promoters decreases during S phase coinciding with homotypic (H2A.Z/H2A.Z) nucleosomes flanking the TSS becoming heterotypic (H2A.Z/H2A). Surprisingly, these nucleosomes remain heterotypic at M phase. At the TSS, we identify an unstable heterotypic H2A.Z-containing nucleosome in G1 which, strikingly, is lost following DNA replication. These dynamic changes in H2A.Z at the TSS mirror a global expansion of the NDR at S and M which, unexpectedly, is unrelated to transcriptional activity. Coincident with the loss of H2A.Z at promoters, it is targeted to the centromere when mitosis begins We performed ChIP-Seq experiments (on mouse Trophoblast Stem cells arrested at G1; S and M stages of thecell cycle) using antibodies against histone variant H2A.Z and sequentional ChIP-re-ChIP-Seq experiments using H2A.Z antibody and H2A antibody in sequence. Combining those data sets with microarray gene expression expression data allowed us to see H2A.Z distribution over promoters of mouse coding genes in cell cycle dependant manner. Interestingly, Input also showed cell-cycle dependent effects, but histone H3 could be used as a cell-cycle independent normalisation factor. We also performed ChIP-seq with a CTCF pull-down to investigate its cell-cycle dependent relationship with heterochromatin.
Project description:A cascade of histone acetylation events with subsequent incorporation of a histone H2A variant plays an essential part in transcription regulation in various model organisms. A key player in this cascade is the chromatin remodellling complex SWR1, which replaces the canonical histone H2A with its variant H2A.Z. Transcriptional regulation of polycistronic transcription units in the unicellular parasite Trypanosoma brucei has been shown to be highly dependent on acetylation of H2A.Z, which is mediated by the histone-acetyltransferase HAT2. The chromatin remodellling complex, which mediates H2A.Z incorporation is not known and an SWR1 orthologue in trypanosomes has not yet been reported. In this study, we identified and characterised an SWR1-like remodelller complex in T. brucei that is responsible for Pol II-dependent transcriptional regulation. Bioinformatic analysis of potential SNF2 DEAD/Box helicases, the key component of SWR1 complexes, identified a 1211 amino acids-long protein that exhibits key structural characteristics of the SWR1 subfamily. Systematic protein-protein interaction analysis revealed the existence of a novel complex exhibiting key features of an SWR1-like chromatin remodelller. RNAi-mediated depletion of the ATPase subunit of this complex resulted in a significant reduction of H2A.Z incorporation at transcription start sites and a subsequent decrease of steady-state mRNA levels. Furthermore, depletion of SWR1 and RNA-polymerase II (Pol II) caused massive chromatin condensation. The potential function of several proteins associated with the SWR1-like complex and with HAT2, the key factor of H2A.Z incorporation, is discussed.
Project description:In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved in plants. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z.
Project description:The human NuA4/TIP60 co-activator complex, a fusion of the yeast SWR1 and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4/H2A/H2A.Z to play crucial roles regulating gene expression and maintaining genome stability. Our cryo-EM studies show that within the NuA4/TIP60 complex, the EP400 subunit serves as an architectural scaffold holding the different functional modules in specific positions and giving rise to a novel arrangement of the ARP module. EP400 interacts with the TRRAP subunit using a footprint that overlaps with that of the SAGA acetyltransferase complex, thereby preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome,emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.