Understanding Streptococcus suis serotype 2 infection in pigs through a transcriptional approach
Ontology highlight
ABSTRACT: Streptococcus suis serotype 2 is an important pathogen of pigs, and the disease it causes is characterized by meningitis, septicaemia and pneumonia with high mortality. The pathogen is also an emerging zoonotic agent and threatens humans that are exposed to pigs or their by-products. We investigated the response of PBMC (Peripheral Blood Mononuclear Cell), brain and lung tissues to infection with S. suis 2 strain SC19 by using the Affymetrix Porcine Genome Array. Six piglets free of S. suis 2 were allocated randomly to the infected group and the uninfected group. Each piglet of the infected group was intravenous injection with Streptococcus suis 2 strain SC19 at a dose of 3Ã105 colony-forming units (CFU). Each piglet of the noninfected group was treated similarly with an identical volume of PBS as control. At 24 h after challenge, the pigs were slaughtered and their brains, lungs and PBMC were collected with RNase-free equipment for microarray analysis.
Project description:Streptococcus suis is an important zoonosis pathogen that causes significant economic losses worldwide characterized by meningitis, septicaemia, arthritis, bronchopneumonia endocarditis. Streptcoccus suis 2 strain SC19 was isolated in Sichuan province in China, during the outbreak in 2005. Septicemia is most popular symptoms for SC19 infection, and mortality is high. We used human acute monocytic leukemia cell line (THP-1) infected SC19 to analysis the pathomechanism of septicemia in SS2 infection. Human acute monocytic leukemia cell line (THP-1) cells were stimulated with Streptcoccus suis 2 (SS2) strain SC19. We added SS2 to THP-1 cells at a MOI of 1:1 (bacteria/cells). Uninfected control cells were incubated with PBS only. After 3 hours incubation, cells were collected for RNA extraction and hybridization on Affymetrix microarrays. A total of 4 samples were challenged, and 4 samples were used as controls. 4 microarrays were used in this experiment.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis Comparative genomic analysis on the 40 S.suis strains of different serotypes and ST types through tilling arrays
Project description:Streptococcus suis serotype 2 is an important pathogen of pigs, and the disease it causes is characterized by meningitis, septicaemia and pneumonia with high mortality. The pathogen is also an emerging zoonotic agent and threatens humans that are exposed to pigs or their by-products. We investigated the response of PBMC (Peripheral Blood Mononuclear Cell), brain and lung tissues to infection with S. suis 2 strain SC19 by using the Affymetrix Porcine Genome Array.
Project description:Streptococcus suis is a zoonotic pathogen that can invade the central nervous system (CNS) and cause meningitis in pigs and humans. The vascularized choroid plexus (ChP) epithelium, known as the blood-cerebrospinal fluid barrier (BCSFB), serves as a route for S. suis invasion of the CNS. In this study, we aimed to use human induced pluripotent stem cells (iPSC)-derived ChP organoids as an in vitro model to investigate S. suis interaction and infection at the BCSFB and the responses of ChP organoids to S. suis using transcriptomics. We also investigated whether the known plasminogen (Plg) binding to S. suis surface enolase and its conversion to proteolytic plasmin (Pln) would facilitate S. suis translocation across the ChP organoid epithelium and alter the ChP response to infection.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Comparative genomic analysis on the 31 S. suis strains of different serotypes and ST types through tilling arrays.
Project description:Streptococcus suis is a major pig pathogen as well as an emerging zoonotic pathogen. Previous work has demonstrated that the S. suis extracellular amylopullulanase enzyme (ApuA) that degrades {alpha}-glucans also functions as an adhesin for porcine epithelial cells. To identify the mechanisms linking carbohydrate metabolism and virulence, we first compared the transcriptome of S. suis in minimal medium supplemented with glucose to minimal medium containing a complex carbohydrate pullulan as a carbon source. The relative expression of eighteen virulence genes including suilysin and apuA was increased during growth in presence of pullulan, compared to growth in glucose. Increased virulence potential of S. suis grown in pullulan was demonstrated using hemolytic assays and increased adhesion and invasion of porcine epithelial cells in vitro. A metabolic map of S. suis was generated and combined with transcriptome data to visualize the metabolic adaption of S. suis during adhesion and invasion of the porcine epithelial cells representing an in vitro model of infection. The role of carbon catabolite control in virulence gene regulation was investigated and the molecular mechanism of transcriptional regulation was elucidated for apuA. We demonstrate that relief of CcpA repression is a crucial transcriptional control mechanism linking carbohydrate mechanism and virulence. The model for the transcriptional regulation of two important virulence factors apuA and suilysin was verified by qPCR analysis of gene expression in S. suis recovered from the organs and blood of infected pigs. Four-condition experiment (bacteria grown in THB or in CM supplemented with three different carbon sources), at two different timepoints (early exponential or late exponential growth phase). One replicate per array.
Project description:Streptococcus suis is an important emerging worldwide pig pathogen and zoonotic agent with rapid evolution of virulence and drug resistance. Licochalcone A, used in traditional Chinese medicine, exhibits antimicrobial, antioxidant and anti-inflammatory activities. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of Streptococcus suis 05ZYH33 treated by subinhibitory concentration of licochalcone A. 132 genes were differentially regulated upon liochalcone A treatment, including 78 genes up-regulated and 54 genes down-regulated which included many central biological functions such as metabolism, transcription and translation. We tried to investigate the antimicrobial mechanism of licochalcone A in the aspect of bacterial cell cycle control. Our analysis indicated that licochalcone A might inhibit the growth of S. suis by controlling the replication initiation and cell division through amino acid metabolism. A cDNA microarray imprinted with 2156 genes representing about 98% of Streptococcus suis serotype 2 genome was used for transcriptome analysis. For two-sample (reference vs. test) microarray hybridization, four independent bacterial cultures from each condition were prepared as biological replicates for RNA isolation. Four dual-fluorescence-labeled cDNA probes were prepared to hybridize with four slides, respectively. Pairwise comparisons were made using dye swaps to avoid labeling bias. A ratio of mRNA levels (test/reference) was calculated for each gene. Significant changes of gene expression were identified with the SAM software. After the SAM analysis, only genes with at least 2-fold changes in expression were collected for further analysis.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Background: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze a global response to the dual infection, we carried out a comprehensive gene expression profiling using a microarray approach to study the swine tracheal epithelial (NPTr) cell response to a co-infection with H1N1 swine influenza virus (swH1N1) and S. suis serotype 2. Results: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone did not result in many differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators, such as chemokines, interleukins, cell adhesion molecules and eicosanoids, were significantly upregulated in the presence of both pathogens comparing to infection with each pathogen taken individually. This synergy may also be the consequence of an increased adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. Conclusion: In a co-infection situation, influenza virus would replicate in the respiratory epithelium inducing an inflammatory infiltrate comprised of mononuclear cells and neutrophils. Despite that these cells are unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of pro-inflammatory mediators during a co-infection with influenza virus may be of critical importance in the pathogenesis and outcome of this respiratory disease complex. Total RNA obtained from NPTr cells infected with S. suis, H1N1, or S. suis & H1N1. Four replicates in both groups.
Project description:Streptococcus suis is a significant cause of bacterial meningitis in humans, particularly in S.E. Asia, and is a leading cause of respiratory and invasive disease in pigs. Phase-variable DNA methyltransferases, associated with Restriction-Modification (R-M) systems, are a source of epigenetic gene regulation, controlling the expression of multiple genes throughout the genome. These systems are known as phasevarions (phase-variable regulons), and have been characterised in many host-adapted bacterial pathogens. We recently established the presence of a Type III DNA methyltransferase in S. suis (ModS), of which two alleles were described, ModS1 and ModS2. Strains which expressed either ModS1 or ModS2 exhibited differential methylation throughout the genome when compared with strains which did not. This altered methylation resulted in changes to gene expression and this SWATH-MS dataset demonstrates the resulting changes to protein expression as a result of the of ModS1 and ModS2. This dataset represents triplicate repeats from strains which express ModS (ON) and strains which do not (OFF).