Depolymerization of plant cell wall glycans by symbiotic human gut bacteria
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE25572: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides thetaiotaomicron) GSE25575: Depolymerization of plant cell wall glycans by symbiotic human gut bacteria (Bacteroides ovatus) Refer to individual Series
Project description:Symbiotic bacteria inhabiting the distal human gut have evolved under intense pressure to utilize complex carbohydrates, predominantly plant cell wall glycans abundant in our diets. These substrates are recalcitrant to depolymerization by digestive enzymes encoded in the human genome, but are efficiently targeted by some of the ~103-104 bacterial species that inhabit this niche. These species augment our comparatively narrow carbohydrate digestive capacity by unlocking otherwise unusable sugars and fermenting them into host-absorbable forms, such as short-chain fatty acids. We used phenotype profiling, whole-genome transcriptional analysis and molecular genetic approaches to investigate complex glycan utilization by two fully sequenced and closely related human gut symbionts: Bacteroides thetaiotaomicron and Bacteroides ovatus. Together these species target all of the common glycosidic linkages found in the plant cell wall, as well as host polysaccharides, but each species exhibits a unique ‘glycan niche’: in vitro B. thetaiotaomicron targets plant cell wall pectins in addition to linkages contained in host N- and O-glycans; B. ovatus uniquely targets hemicellulosic polysaccharides along with several pectins, but is deficient in host glycan utilization. Growth of Bacteroides thetaiotaomicron in vitro in minimal medium plus different purified complex glycans. Observation of increased gene expression was used to determine genes that are involved in metabolism of each glycan. Two biological replicates each.
Project description:Symbiotic bacteria inhabiting the distal human gut have evolved under intense pressure to utilize complex carbohydrates, predominantly plant cell wall glycans abundant in our diets. These substrates are recalcitrant to depolymerization by digestive enzymes encoded in the human genome, but are efficiently targeted by some of the ~103-104 bacterial species that inhabit this niche. These species augment our comparatively narrow carbohydrate digestive capacity by unlocking otherwise unusable sugars and fermenting them into host-absorbable forms, such as short-chain fatty acids. We used phenotype profiling, whole-genome transcriptional analysis and molecular genetic approaches to investigate complex glycan utilization by two fully sequenced and closely related human gut symbionts: Bacteroides thetaiotaomicron and Bacteroides ovatus. Together these species target all of the common glycosidic linkages found in the plant cell wall, as well as host polysaccharides, but each species exhibits a unique ‘glycan niche’: in vitro B. thetaiotaomicron targets plant cell wall pectins in addition to linkages contained in host N- and O-glycans; B. ovatus uniquely targets hemicellulosic polysaccharides along with several pectins, but is deficient in host glycan utilization. Bacteroides ovatus bacteria were grown either in vitro on defined complex glycan sources, or in vivo in the intestinal tract of gnotobiotic mice fed variable diets. Increased in vitro gene expression was used to indicate the genes required for metabolism of complex glycans and compared to in vivo transcriptional activity to determine expression in the mouse gut.
Project description:The large-scale application of genomic and metagenomic sequencing technologies has yielded a number of insights about the metabolic potential of symbiotic human gut microbes. Bacteria that colonize the mucosal layer that overlies the gut epithelium have access to highly-sulfated polysaccharides (i.e., mucin oligosaccharides and glycosaminoglycans), which they could potentially forage as nutrient sources. To be active, sulfatases must undergo a critical post-translational modification catalyzed in anaerobic bacteria by the AdoMet enzyme anSME (anaerobic Sulfatase-Maturating Enzyme). In the present study, we have tested the role of this pathway in the prominent gut symbiont Bacteroides thetaiotaomicron, which possesses more predicted sulfatases (28) than in the human genome and a single predicted anSME. In vitro studies revealed that deletion of its anSME (BT0238) results in loss of sulfatase activity and impaired ability to use sulfated polysaccharides as carbon sources. Co-colonization of germ-free animals with both isogenic strains, or invasion experiments involving the introduction of one then the other strain, established that anSME activity and the sulfatases that are activated via this pathway, are important fitness factors for B. thetaiotaomicron, especially when mice are fed a simple sugar diet that requires this saccharolytic bacterium to adaptively forage on host glycans as nutrients. Whole genome transcriptional profiling of wild-type and the anSME mutant in vivo revealed that loss of this enzyme alters expression of genes involved in mucin utilization and that this disrupted ability to access mucosal glycans likely underlies the observed dramatic colonization defect. Comparative genomic analysis reveals that 100% of 46 fully sequenced human gut Bacteroidetes contain homologs of BT0238 and genes encoding sulfatases, suggesting that this is an important and evolutionarily conserved feature. Three replicate samples from 4 different biological treatment groups: 1. Wild-type B. thetaiotaomicron from the cecum of gnotobiotic mice fed a simple-sugar diet; 2. chuR mutant B. thetaiotaomicron from the cecum of gnotobiotic mice fed a simple-sugar diet; 3. Wild-type B. thetaiotaomicron from the cecum of gnotobiotic mice fed a plant-rich diet; 4. chuR mutant B. thetaiotaomicron from the cecum of gnotobiotic mice fed a plant-rich diet.
Project description:Symbiotic bacteria inhabiting the distal human gut have evolved under intense pressure to utilize complex carbohydrates, predominantly plant cell wall glycans abundant in our diets. These substrates are recalcitrant to depolymerization by digestive enzymes encoded in the human genome, but are efficiently targeted by some of the ~103-104 bacterial species that inhabit this niche. These species augment our comparatively narrow carbohydrate digestive capacity by unlocking otherwise unusable sugars and fermenting them into host-absorbable forms, such as short-chain fatty acids. We used phenotype profiling, whole-genome transcriptional analysis and molecular genetic approaches to investigate complex glycan utilization by two fully sequenced and closely related human gut symbionts: Bacteroides thetaiotaomicron and Bacteroides ovatus. Together these species target all of the common glycosidic linkages found in the plant cell wall, as well as host polysaccharides, but each species exhibits a unique ‘glycan niche’: in vitro B. thetaiotaomicron targets plant cell wall pectins in addition to linkages contained in host N- and O-glycans; B. ovatus uniquely targets hemicellulosic polysaccharides along with several pectins, but is deficient in host glycan utilization.
Project description:Symbiotic bacteria inhabiting the distal human gut have evolved under intense pressure to utilize complex carbohydrates, predominantly plant cell wall glycans abundant in our diets. These substrates are recalcitrant to depolymerization by digestive enzymes encoded in the human genome, but are efficiently targeted by some of the ~103-104 bacterial species that inhabit this niche. These species augment our comparatively narrow carbohydrate digestive capacity by unlocking otherwise unusable sugars and fermenting them into host-absorbable forms, such as short-chain fatty acids. We used phenotype profiling, whole-genome transcriptional analysis and molecular genetic approaches to investigate complex glycan utilization by two fully sequenced and closely related human gut symbionts: Bacteroides thetaiotaomicron and Bacteroides ovatus. Together these species target all of the common glycosidic linkages found in the plant cell wall, as well as host polysaccharides, but each species exhibits a unique ‘glycan niche’: in vitro B. thetaiotaomicron targets plant cell wall pectins in addition to linkages contained in host N- and O-glycans; B. ovatus uniquely targets hemicellulosic polysaccharides along with several pectins, but is deficient in host glycan utilization.
Project description:Bacteroides thetaiotaomicron was grown and transcriptionally profiled on a number of different host mucosal glycans and their component mono- and disaccharides. Experiments are performed in biological duplicate (2 replicates per growth condition). All cultures were harvested at similar points in mid-log phase of growth in minimal medium plus 0.5% (total amount, w/v) of a defined carbon source. Cultures on individual carbon sources are designed to be referenced to a minimal medium glucose control (GSM302686 and 302791) grown in the same growth format. Note that the hybridization targets used for these two reference datasets are from the exact same prep used for similar targets on the GPL1821 platform (sets GSM301720 and 301721)
Project description:Purpose: Examining the transcriptome of human gut bacteria (Bacteroides xylanisolvens/Bacteroides ovatus) that grow on mucin O-linked glycans as a sole carbon source Methods: Strains were grown on 10 mg/ml mucin O-linked glycans (MOG) or 5 mg/ml glucose as a sole carbon source in vitro. Fold change was calculated as MOG over glucose. Once cells reached an optical density corresponding to mid-log phase growth, RNA was isolated and rRNA depleted. Samples were multiplexed for sequencing on the Illumina HiSeq platform at the University of Michigan Sequencing Core. Data was analyzed using Arraystar software (DNASTAR, Inc.) Genes with significant up- or down-regulation were determined by the following criteria: genes with an average fold-change >10-fold and biological replicates with a normalized expression level >1% of the overall average RPKM expression level. Results: We identified genes activated in response to mucin O-linked glycans from Bacteroides xylanisolvens/Bacteroides ovatus strains