Toxicogenomic analyses of Ruditapes philippinarum by DNA microarray: new tools for anthropogenic impact assessment on the Venice Lagoon.
Ontology highlight
ABSTRACT: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum sampled in four seasons in 4 different areas of Venice Lagoon. For each tissue, total RNA was extracted from four (4) independent biological replicates of digestive gland, each consisting of tissue pools of five (5) animals. In this study, we analyzed 64 samples (pools of 5 digestive gland). Gene expression profiling was performed using the Agilent-027304 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Digestive Gland Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in digestive gland of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of digestive gland for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed. Gills Samples: A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills of R. philippinarum. Total RNA was extracted from three (3) independent biological replicates of gills for each sampling site, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified1,127 probes differentially expressed. Digestive Gland Samples: In this study, we analyzed six (6) samples, three (3) pools of digestive gland of Manila clam sampled in Marghera and three(3) pools of digestive gland of Manila clam sampled in Alberoni. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal. Gills Samples: In this study, we analyzed six (6) samples, three (3) pools of gills of Manila clam sampled in Marghera and three(3) pools of gills of Manila clam sampled in Alberoni. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A manila clam oligo microarray platform (GPL10900) was used to profile gene expression in gills and digestive gland of R. philippinarum. For each tissue, total RNA was extracted from three (3) independent biological replicates of digestive gland and gills, each consisting of tissue pools of five (5) animals. Statistical analysis with SAM (Significance Analysis of Microarray) identified 8,257 probes differentially expressed between the two different tissues. In this study, we analyzed six (6) samples, three (3) pools of digestive gland and three (3) pools of gills. Gene expression profiling was performed using the Agilent-019810 Ruditapes philippinarum Oligo Microarray platform (GPL10900) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Four pools of digestive glands were treated as biological replicates in order to evaluate the repeatability of Ruditapes philippinarum oligo microarray platform. In this study, we analyzed four (4) independent pools of Ruditapes philippinarum digestive glands. Gene expression profiling was performed using the Agilent-027304 Ruditapes philippinarum Oligo Microarray platform (1 arrays) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A Ruditapes philippinarum microarray platform was developed to identify digestive gland gene expression profiles in response to 100 µg /l and 1000 µg/l ibuprofen exposure. A comparative analysis of gene expression was conducted in Manila clam R.philippinarum exposed to ibuprofen.Clams were exposed for 1, 3, 5 and 7 days to 0, 100 and 1000 µg IBU/l, and digestive gland gene expression were measured. Gene expression profiling was performed using an Manila clam-specific oligo-DNA microarray of 14,156 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:An R.decussatus microarray platform was developed to to profile gene expression in R. decussatus heavy infected by Perkinsus olseni A comparative analysis of gene expression was conducted between Grooved carpet shell clam R. decussatus individuals for non infected and infected by Perkinsus olseni clam gills. Gene expression profiling was performed using an R.decussatus oligo-DNA microarray of 43,758 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A sea bass oligo microarray platform was used to profile gene expression in mandibles of 58 days-old sea bass affected by prognathism, a skeletal malformation that strongly affects sea bass production. Two different conditions: i) protruding jaws, and ii) normal jaws were used for gene expression analysis. For each condition, total RNA was extracted from four (4) independent biological replicates, each consisting of pools of five (5) jaws. Statistical analysis with SAM (Significance Analysis of Microarray) identified 333 probes (corresponding to 242 unique transcripts) significantly down-regulated in deformed individuals compared to normal ones. In this study, we analyzed eight(8) samples, four (4) pools of jaws dissected from normal sea bass and four (4) pools of jaws dissected from individuals affected by prognathism. Gene expression profiling was performed using the Agilent-019810 Dicentrarchus labrax Oligo Microarray platform (8 arrays, no replicate) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:The Manila clam (Ruditapes philippinarum) is a cultured bivalve species with high worldwide commercial importance. Nevertheless, diseases can cause high economical losses. For this reason, the study of immune genes in bivalve mollusks has increased in the last years. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application for the study of the gene transcription profiles of hemocytes from clams challenged with Vibrio alginolyticus through a time course. A comparative analysis of gene expression was conducted between R. philippinarum infected and non-infected by V. alginolyticus clam hemocytes. Clams (n=100) were notched in the shell next to the adductor muscles and injected with 100 µl of Vibrio alginolyticus, strain TA15, (10^8 UFC/ml in PBS) to mimic an intramuscular infection. Controls (n=100) were injected with 100 µl of PBS. After stimulation, clams were returned to the tanks and maintained at 15ºC until sampling at 3, 8, 24, and 72 hours after challenge Hemolymph (1 ml) was withdrawn from the adductor muscle of the clams with a 0.5mm diameter (25G) disposable needle. Hemolymph from four individuals was pooled and biological replicates were taken at each sampling point. Hemolymph was centrifuged at 4°C at 3000 g for 10 minutes. The pellet was resuspended in 250 µl of Trizol (Invitrogen). Total RNA isolation was conducted following the manufacturer's specifications in combination with the RNeasy mini kit (Qiagen) for RNA purification after DNase I treatment. Gene expression profiling was performed using an R. philippinarum oligo-DNA microarray of 13,671 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from high (Tiber river, Italy) and low pollution (Bolsena lake, Italy) environments. Gene expression profiling was performed using an European eel-specific oligo-DNA microarray of 14,913 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:A bovine oligo microarray platform (GPL7053) was used to evidence differences in gene expression profiles from thirty (30) muscle samples from growth promoters-treated cows and ten (10) from control animals. In this study, we analyzed forty (40) bovine biceps brachii samples, thirty (30) from growth promoters treated cows and ten (10) from control animals. Gene expression profiling was performed using the Agilent-015354 Bos taurus Oligo Microarray platform (GPL7053) based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Two different early developmental stages of gilthead sea bream: i) larvae at 24 hours post-hatching ( Stage 1), and ii) larvae at 96 hours post-hatching (Stage 4), were used for gene expression analysis. For each stage, total RNA was extracted from five (5) independent biological replicates, each consisting of pools of approximately 40-50 larvae. Based on SAM analysis, 1518 genes were differentially expressed between the two stages with a FDR (False Discovery Rate) of 0.0. In this study, we analyzed the gene expression profiles of two early developmental stages of gilthead sea bream using Agilent-016251 Sparus aurata Oligo Microarray platform (10 arrays, no replicate) based on single-colour detection (Cyanine-3 only). Microarrays are scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides are scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software creates a unique ID for each pair of XDR scans and saves it to both scan image files. Feature Extraction 9.5 uses XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal .