Cell-type based analysis of microRNA profiles in the mouse brain
Ontology highlight
ABSTRACT: MicroRNAs (miRNA) are implicated in brain development and function but the underlying mechanisms have been difficult to study in part due to cellular heterogeneity in neural circuits. To systematically analyze miRNA expression in neurons, we have established a miRNA tagging and affinity purification (miRAP) method that is targeted to cell types through the Cre-loxP binary system in mice. Our studies of the neocortex and cerebellum reveal the expression of a large fraction of known miRNAs with distinct profiles in glutamatergic and GABAergic neurons, and subtypes of GABAergic neurons. We further detected putative novel miRNAs, tissue or cell type-specific strand selection of miRNAs, and miRNA editing. Our method thus will facilitate a systematic analysis of miRNA expression and regulation in specific neuron types in the context of neuronal development, physiology, plasticity, pathology and disease models, and is generally applicable to other cell types and tissues. RNA was extracted from miRNA tagging samples(Ago2 IP or Myc IP), processed and sequenced on Illumina genome analyzer
Project description:MicroRNAs (miRNA) are implicated in brain development and function but the underlying mechanisms have been difficult to study in part due to cellular heterogeneity in neural circuits. To systematically analyze miRNA expression in neurons, we have established a miRNA tagging and affinity purification (miRAP) method that is targeted to cell types through the Cre-loxP binary system in mice. Our studies of the neocortex and cerebellum reveal the expression of a large fraction of known miRNAs with distinct profiles in glutamatergic and GABAergic neurons, and subtypes of GABAergic neurons. We further detected putative novel miRNAs, tissue or cell type-specific strand selection of miRNAs, and miRNA editing. Our method thus will facilitate a systematic analysis of miRNA expression and regulation in specific neuron types in the context of neuronal development, physiology, plasticity, pathology and disease models, and is generally applicable to other cell types and tissues.
Project description:We used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during murine forebrain development. We found several examples of clonal divergence and convergence in both neurons and glia, and examined the processes that led to clonal divergence of GABAergic neurons. Immediately after exiting the cell-cycle, GABAergic neurons originating from the same mitotic progenitor diverged into different trajectories, suggesting that differentiation into subtypes is initiated as a lineage-dependent processes at the progenitor cell level.
Project description:Background: MicroRNAs (miRNAs) are short non-coding RNAs predicted to regulate one third of protein-coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor), miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. Principal Findings: We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2) cells during retinoic acid (RA)-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. Conclusions: In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis. The experiment consists of a total of 51 arrays: 29 retinoic acid time series arrays (0,2,4,6,8,12,14,21 and 28 days), 2 each of NT2-derived neurons and astrocytes, 12 primary human fetal astrocytes, 3 primary human embryonic astrocytes and 3 primary human neurons. Each condition has a minimum of 2 biological replicates. The samples were compared as single channel experiments. NOTE: The raw data files were submitted as generated in Quantarray with 2 channels, but due to issues with the control sample dye (Cy5 on Channel 1), only the Channel 2 (Cy3) data was analysed.
Project description:We have used RNA immunoprecipitation to identify the set of mRNAs that HIV-1 Tat interacts with in T-cells. We have also performed measurements of relative RNA abundance to determine if Tat binding is associated with an increase in RNA abundance in Tat-expressing T-cells and during HIV infection of primary T-cells. We have also used RNA IP and ChIP-Chip to compare the RNAs with which Tat interacts with to the RNAs that RISC interacts with and the genes associated with pTEF-b.
Project description:We developed an affinity purification approach to isolate tagged nuclei in mice (similar to INTACT; [Deal R.B. and Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18,1030-1040. (2010)]) and used it to characterize genome-wide patterns of transcription, DNA methylation, and chromatin accessibility in 3 major neuron classes of the neocortex (excitatory pyramidal neurons, parvalbumin (PV)-positive GABAergic interneurons, and vasoactive intestinal peptide (VIP)-positive GABAergic interneurons). By combining cell purification and integrative analysis, our findings relate the phenotypic and functional complexity of neocortical neurons to their underlying transcriptional and epigenetic diversity. RNA-seq, MethylC-seq, ATAC-seq, and ChIP-seq for histone modifications using INTACT-purified nuclei from the mouse neocortex
Project description:Anxiety is elicited by excessive apprehension about unpredictable threats. However, the neural circuit governing unpredictable threat induced anxiety remains unclear. Here, we found ventral bed nucleus of the stria terminalis (vBNST) GABAergic neurons displayed selective activation to unpredictable threats by means ofthrough coordinated excitatory input from insular cortex (IC) glutamergic neurons and inhibitory input from lateral nucleus of the amygdala (CeL) somatostatin (SOM) neurons. Using activity-dependent neuronal tagging technology, we found that unpredictable threat responsive cells in vBNST drive freezing and anxiety via projections to ventral lateral periaqueductal grey (vlPAG) and median nucleus of the amygdala (CeM) respectively. Finally, we identified KCNQ3 plays an essential role in hyperactivity of vBNST GABAergic neurons and induced anxiety. These data identified a forward inhibitory circuit that determine the selective activation of vBNST in unpredictable threat and anxiety, and suggest that Kcnq3 KCNQ3 channel acts as a promising target in treatment of anxiety disorder following unpredictable stress.
Project description:Due to the RNA nature of their genomes, influenza viruses have to utilize many RNA-binding proteins (RBPs) of both viral and host origin, for their replication. To uncover the comprehensive vRNA-host protein interactions, we performed affinity purification coupled with mass spectrometry (AP-MS) analysis of influenza vRNA complexes. The eight vRNA segments of H7N9 were transcribed and individually labeled with biotin in vitro and incubated with IAV virus-infected THP-1 cells, and vRNA complexes were enriched streptavidin magnetic beads and analyzed by mass spectrometry
Project description:Employing MCT-1 oncogene mediated transformation of immortalized breast epithelial MCF10A cells; we characterized the largely reciprocal association of these two RBPs with target mRNAs and their influence on protein expression vis-à-vis cellular transformation. Using a ribonomics approach, we identified mRNAs from cancer-related pathways whose association with AUF1 and/or HuR were altered when comparing immortalized with transformed MCF10A cells. Significantly, we were able to demonstrate that knockdown of HuR expression using RNA interference, reduced anchorage-independent growth capacity in transformed MCF10A cells as well as decreased protein expression of a number of validated target genes. Our data demonstrate that the global alterations in binding of HuR and AUF1 with target transcripts have a critical role in post-transcriptional regulation of genes encoding proteins involved in breast epithelial cell transformation. In this study, using a microarray approach we demonstrate that the dynamic global changes in association of two RBPs, HuR and AUF1, with cancer-related mRNAs have important influence on cell transformation in a MCT-1-mediated breast epithelial transformation model.
Project description:GABAergic interneurons are lost in conditions including epilepsy and CNS injury, but there are few culture models available to study their function. Towards the goal of obtaining renewable sources of GABAergic neurons, we used the molecular profile of a functionally-incomplete GABAergic precursor clone to screen 17 new clones isolated from GFP+ rat E14.5 cortex and ganglionic eminence (GE) that were generated by viral introduction of v-myc. The clones grow as neurospheres in medium with FGF2, and after withdrawal of FGF2 they exhibit varying patterns of differentiation. Transcriptional profiling and qPCR indicated that one clone (GE6) expresses high levels of mRNAs encoding Dlx1, 2, 5 and 6, glutamate decarboxylases, and presynaptic proteins including neuropeptide Y and somatostatin. Protein expression confirmed that GE6 is a progenitor with restricted differentiation giving rise mostly to neurons with GABAergic markers. In co-cultures with hippocampal neurons, GE6 neurons became electrically excitable and received both inhibitory and excitatory synapses. After withdrawal of FGF2 in cultures of GE6 alone, neurons matured to express BetaIII-tubulin, and staining for synaptophysin and vesicular GABA transporter (VGAT) were robust after 1-2 weeks of differentiation. GE6 neurons also became electrically excitable and displayed synaptic activity, but synaptic currents were carried by chloride and were blocked by bicuculline. The results suggest that the GE6 clone, which is ventrally derived from the GE, resembles GABAergic interneuron progenitors that migrate into the developing forebrain. This is the first report of a relatively stable fetal clone that can be differentiated into GABAergic interneurons with functional synapses. The purpose was to compare differentiation patterns of several different immortalized rat neural progenitor clones to identify early stages in differentiation. The cell clones studies were: GE6 (GABAergic neuronal precursor), GE2 (non-neuronal precursor, CTX8 (multipotential precursor), L2.2 (interneuronal precursor), and L2.3 (multipotential precursor). Five rat neural precursor cell clones were compared at three different time points following FGF2 withdrawal, which triggers differentiation. Three sister culture replicates were performed for each cell clone and time point, yielding 45 samples. One microarray failed so we have 44 microarray results in the dataset.