Distribution of Drosophila insulator proteins during interphase and mitosis
Ontology highlight
ABSTRACT: Here we compare the distribution of insulator proteins during interphase and mitosis. We performed ChIP-seq analysis on purified populations of interphase and mitotic Kc cells, using antibodies against CP190, dCTCF, BEAF, and Su(Hw). Examination of 4 different insulator proteins during interphase and mitosis
Project description:From the cell-based investigation, RBPJ is one of the few proteins retained on chromatin during cell division. ChIP-seq experiments were performed to understand the binding pattern of RBPJ between interphase and mitosis and to identify the genes requiring RBPJ binding for the maintenance of transcriptional memory. Our results indicate that ~60% of RBPJ occupancy in interphase is retained on mitotic chromatin, and that accounts for 80% of RBPJ in mitosis. The gene ontology analysis reveals that the genes involved in stem cell maintenance, development and differentiation-related pathways correlated with sites of RBPJ occupancy. GO analysis also suggests that RBPJ plays a role in the metabolism and processing of non-coding RNAs. Motif analysis of RBPJ binding sites reveals that not only RBPJ motif but also CTCF motif are enriched around RBPJ binding sites. From these results, we propose that RBPJ can function as a mitotic bookmark, marking genes for efficient transcriptional activation or repression upon exit from mitosis, and may play a role in higher order chromatin structure by collaborating with CTCF. To compare the genomic RBPJ localization in mitotic and interphase cells, mouse F9 cells were harvested and labeled as cycling cells (containing 95% interphase and 5% mitosis cells); nocodazole treated F9 cells were harvested and labeled as mitotic cells. Cell samples were proceeded to ChIP-seq experiments, and each of the experiment contains a set of ChIP DNA product: input as the background control and IP as the RBPJ binding product. Background noise was substracted and the obtained signal was used for the comparison of interphase and mitosis by statistical analysis. Please note that processed data (*bed) was generated from *rep1 sample (i.e. no processed-data for rep2 sample).
Project description:We mapped the localization of insulator proteins in Drosophila S2 cells in the presence or absence of 12mM of 3AB. We found that inhibition of PARylation affects DNA binding of insulator proteins only at a small subsets of genomic sites. Examination of genomic occupancy for insulator proteins in S2 cells with or without 3AB inhibition.
Project description:Here we compare the distribution of insulator proteins during interphase and mitosis. We performed ChIP-seq analysis on purified populations of interphase and mitotic Kc cells, using antibodies against CP190, dCTCF, BEAF, and Su(Hw).
Project description:Mitosis entails global alterations to chromosome structure and nuclear architecture, concomitant with transient silencing of transcription. How cells transmit transcriptional states through mitosis remains incompletely understood. While many nuclear factors dissociate from mitotic chromosomes, the observation that certain nuclear factors and chromatin features remain associated with individual loci during mitosis originated the hypothesis that they could provide transcriptional memory through mitosis. To obtain the first genome-wide view of the dynamics of chromatin structure during mitosis, we compared the DNase sensitivity of interphase and mitotic chromatin at two stages of cellular maturation in a rapidly dividingmurine erythroblastmodel. Despite global chromosome condensation visible during mitosis at the microscopic level, the chromatin accessibility landscape is largely unaltered. However, mitotic chromatin accessibility is locally dynamic, with individual loci maintaining none, some, or all of their interphase accessibility. Mitotic reduction in accessibility occurs primarily within narrow, highly hypersensitive sites that frequently coincide with transcription factor binding sites, whereas broader domains of moderate accessibility tend to be more stable. In mitosis, proximal promoters generally maintain their accessibility, whereas distal regulatory elements preferentially lose accessibility. Promoters with the highest degree of accessibility preservation in mitosis tend to also be accessible across many murine tissues in interphase. Transcription factor GATA1 exerts site-specific changes in interphase accessibility that are most pronounced at distal regulatory elements, but does not visibly influence mitotic accessibility. We conclude that features of open chromatin are remarkably stable through mitosis and are modulated at the level of individual genes and regulatory elements. Dnase-Seq data is integrated with Chip-seq [GSE36589, GSE30142] and RNA-seq to examine epigentic changes in mitosis. We performed DNase-seq on two cell lines, G1E and G1E-ER4, both on an asynchronus population, and on a sample of cells in mitosis; each of the 4 experiments in triplicate.
Project description:ChIP-seq was performed using Drosophila Kc167 cells using antibodies against the two isoforms of Fs(1)h, the Brd4 homologue. Differences in binding patterns between the two isoforms are described. We examined the differences in Fs(1)h isoform binding across the genome and describe the short isoform to be correlated with transcription at enhancers and promoters. The long isoform is found predominately at insulator binding sites where multiple insulators are bound.
Project description:Here we examine changes in the distribution of Drosophila insulator proteins during the ecdysone response. We performed ChIP-seq analysis in Kc cells at 0, 3, and 48 hours of ecdysone treatment with antibodies against CP190, Su(Hw), dCTCF, and BEAF-32B. Examination of 4 different insulator proteins at 3 time points of ecdysone treatment.
Project description:This SuperSeries is composed of the following subset Series: GSE30686: Gene expression analysis of Kc cells from Drosophila melanogaster during ecdysone treatment and CP190 knockdown GSE30740: Distribution of Drosophila insulator proteins after ecdysone treatment in Kc cells Refer to individual Series