Cross-species transcriptional networks in Diabetic Glomerulopathy in mouse and man
Ontology highlight
ABSTRACT: Murine models have been valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility . In order to define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2 mice, db/db C57BLKS, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared, human-mouse cross-species glomerular transcriptional networks containing 143 (Human-STZ), 97 (Human- db/db), and 162 (Human- eNOS-/- db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetic complications, such as elements of JAK-STAT and VEGFR signaling pathways . In addition, novel pathways not formally associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in the selection of mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans. We used microarrays to analyze the transcriptome of three different diabetic mouse models Glomerular RNA was extracted using the RNeasy Mini Kit and processed for hybridization on Affymetrix GeneChip Mouse Genome 430 2.0 microarrays.
Project description:Murine models have been valuable instruments in defining the pathogenesis of diabetic nephropathy (DN), but they only partially recapitulate disease manifestations of human DN, limiting their utility . In order to define the molecular similarities and differences between human and murine DN, we performed a cross-species comparison of glomerular transcriptional networks. Glomerular gene expression was profiled in patients with early type 2 DN and in three mouse models (streptozotocin DBA/2 mice, db/db C57BLKS, and eNOS-deficient C57BLKS db/db mice). Species-specific transcriptional networks were generated and compared with a novel network-matching algorithm. Three shared, human-mouse cross-species glomerular transcriptional networks containing 143 (Human-STZ), 97 (Human- db/db), and 162 (Human- eNOS-/- db/db) gene nodes were generated. Shared nodes across all networks reflected established pathogenic mechanisms of diabetic complications, such as elements of JAK-STAT and VEGFR signaling pathways . In addition, novel pathways not formally associated with DN and cross-species gene nodes and pathways unique to each of the human-mouse networks were discovered. The human-mouse shared glomerular transcriptional networks will assist DN researchers in the selection of mouse models most relevant to the human disease process of interest. Moreover, they will allow identification of new pathways shared between mice and humans. We used microarrays to analyze the transcriptome of three different diabetic mouse models
Project description:Diabetic neuropathy (DN) is a common complication of diabetes. While multiple pathways are implicated in the pathophysiology of DN, there are no specific treatments for DN and currently it is not possible to predict DN onset or progression. To examine gene expression signatures related to DN, microarray experiments were performed on a subset of human sural nerves collected during a 52-week clinical trial of acetyl-L-carnitine. A series of bioinformatics analyses analyzed differential gene expression and identified gene networks and pathways potentially responsible for the progression of DN. We identified 532 differentially expressed genes (DEGs) between patient samples with progressing or non-progressing DN, which were functionally enriched in pathways involving defense and inflammatory responses and lipid metabolism. A literature-derived co-citation network of the DEGs revealed gene sub-networks centered on apolipoprotein E (APOE), jun oncogene (JUN), leptin (LEP), serpin peptidase inhibitor E Type 1 (SERPINE1) and peroxisome proliferator-activated receptor gamma (PPARG). DEGs were used to predict DN progression in a test set of patients. Ridge-regression classification models with 14 DEGs achieved an overall accuracy of 92%, correctly classifying the progression status of 11 out of 12 patients. To our knowledge, this is the first study to identify transcriptional changes associated with DN progression in human sural nerves biopsies and describe their potential utility for molecular prediction of DN. Our results identifying the unique gene signature of patients with progressive DN will facilitate the development of new mechanism-based diagnostics and therapies. 18 progressor and 17 non-progressor at 52 weeks
Project description:Diabetic nephropathy(DN) is a common diabetic microvascular complication, the underlying mechanisms involved in DN remain to be elucidated. We used microarrays to explore the global profile of gene expression for better understanding the molecular mechanism of diabetic nephropathy in type 2 diabetic db/db mice.
Project description:To investigate dynamic changes in glomerular cells, including podocyte, mesangial cells and glomerular endothelial cells, in the development of diabetic nephropathy We then performed gene expression profiling analysis using data obtained from RNA-seq of glomerular cells of control(m/m), diabetic (db-/- 6-week-old) and diabetic nephropathy (db-/- 10-week-old with albuminuria) mice
Project description:Diabetic nephropathy (DN) is characterized by metabolic disorder and inflammation. However, the regulatory effects that long noncoding RNAs (lncRNAs) have on the pathogenesis of DN and on the efficacy of rosiglitazone treatment has yet to be clearly defined. Herein, we performed unbiased RNA sequencing to characterize the transcriptomic profiles in db/db diabetic mouse model with or without rosiglitazone treatment that served to improve the phenotypes of DN. Differential expression analysis revealed that those genes that had their expression restored following treatment with rosiglitazone are likely involved in protection against DN. Our data elucidate the novel renoprotective molecular mechanism of PPARγ agonists and propose lncRNA targets for diabetic nephropathy treatment.
Project description:The objective of this study is to create an encyclopedia of all genes expressed in the glomerular endothelial cell under normal and diabetic conditions. We utilized Tie2-GFP transgenic mice to mark cells of the glomerular endothelium. To induce diabetic nephropathy (DB), a genetic model of DB, BKS.Cg-m +/+ Leprdb/J from Jax laboratories was used. We utilized fluorescent activated cell sorting (FACS) to isolate glomerular endothelial cells from normal and diabetic mice. The RNAs from these samples were isolated and utilized to hybridize to microarrays, which offers a powerful, efficient and effective method for the creation of a gene expression atlas. Microarrays were used to identify the transciptional differences that occur in the glomular endothelium of a diabetic mouse. Diabetic and control mice carrying the Tie2-GFP transgenic were utilized to isolate the endothelial cells from the adult glomerulus. The endothelial cells were isolated from the glomerulus using FACS. RNA was isolated and the gene expression profiles were determined by microarrays.
Project description:The objective of this study is to create an encyclopedia of all genes expressed in the glomerular endothelial cell under normal and diabetic conditions. We utilized Tie2-GFP transgenic mice to mark cells of the glomerular endothelium. To induce diabetic nephropathy (DB), a genetic model of DB, BKS.Cg-m +/+ Leprdb/J from Jax laboratories was used. We utilized fluorescent activated cell sorting (FACS) to isolate glomerular endothelial cells from normal and diabetic mice. The RNAs from these samples were isolated and utilized to hybridize to microarrays, which offers a powerful, efficient and effective method for the creation of a gene expression atlas. Microarrays were used to identify the transciptional differences that occur in the glomular endothelium of a diabetic mouse.
Project description:The molecular mechanisms underlying diabetic nephropathy (DN) are poorly defined. We sought to investigate the roles of kallikrein-related peptidases (KLKs) in DN pathogenesis. Screening of renal tissue from diabetic mice revealed KLK8 as the most highly induced gene in KLK family. KLK8 expression was greater in glomerular endothelial cells (GECs) than other glomerular cells in DN patients and diabetic mice. The rats with KLK8 overexpression exhibited proteinuria, reduced glomerular filtration rate (GFR), and mesangial expansion, podocytopenia, glomerulosclerosis and interstitial fibrosis in renal tissues. In contrast, global KLK8 deficiency reversed streptozotocin-induced hallmark of DN features including proteinuria, reduced GFR, glomerular hypertrophy, glycocalyx loss in GECs, podocytopenia, leukocyte infiltration, glomerulosclerosis, and interstitial fibrosis in mice. Moreover, endothelial KLK8 ablation also blocked streptozotocin-induced hallmark of DN features. Mechanically, elevated KLK8 in GECs promoted endothelial hyperpermeability, glycocalyx injury, and monocyte recruitment and adhesion through downregulation and shedding of syndecan-4 (SDC4). KLK8 upregulation in GECs stimulated mesangial cell proliferation and activation via increasing leukemia inhibitory factor (LIF) release. Moreover, circulatory KLK8 levels correlated positively with LIF and SDC4 in diabetic nephropathy patients. Our study identifies KLK8 as a novel driver of DN development and progress and highlight potential therapeutic strategies targeting KLK8 for DN.
Project description:Mesangial cells (MCs) in the kidney are central to maintaining glomerular integrity, and their impairment leads to major glomerular diseases including diabetic nephropathy (DN). Although high blood glucose elicits abnormal alterations in MCs, the underlying molecular mechanism is poorly understood. Here, we show that YAP and TAZ, the final effectors of the Hippo pathway, are highly increased in MCs of patients with DN and of Zucker diabetic fatty rats. Moreover, high glucose directly induces activation of YAP/TAZ through the canonical Hippo pathway in cultured MCs. Hyperactivation of YAP/TAZ in mouse model MCs recapitulates the hallmarks of DN, including excessive proliferation of MCs and extracellular matrix deposition, endothelial cell impairment, glomerular sclerosis, albuminuria, and reduced glomerular filtration rate. Mechanistically, activated YAP/TAZ bind and stabilize N-Myc protein, one of the Myc family of oncogenes. N-Myc stabilization leads to aberrant enhancement of its transcriptional activity and eventually to MC impairments and DN pathogenesis. Together, these findings shed light on how high blood glucose in diabetes mellitus leads to DN and support a rationale that lowering blood glucose in diabetes mellitus could delay DN pathogenesis.
Project description:Diabetic nephropathy(DN) is a common diabetic microvascular complication, Irbesartan is the first-line drug for clinical treatment of diabetic nephropathy, but its pharmacological mechanism and target are not yet fully clear. We used microarrays to explore the global profile of gene expression for better understanding the action mechanism of irbesartan in alleviating renal injuries of diabetic db/db mice