MiRNA transcript levels in ccRCC-derived cell lines and proximal tubular epithelial cell samples
Ontology highlight
ABSTRACT: Despite numerous studies reporting deregulated microRNA (miRNA) and gene expression patterns in clear cell renal cell carcinoma (ccRCC), no direct comparisons have been made to its presumed normal counterpart; the renal proximal epithelial tubular cells (PTEC). The aim of this study was to determine the miRNA expression profiles of ten clear cell renal cell carcinoma-derived cell lines and short-term cultures of PTEC, and to correlate these with their gene expression, and copy-number profiles. Using microarray-based methods, a significantly altered expression level in ccRCC cell lines was observed for 23 miRNAs and 1630 genes. The set of miRNAs with significantly decreased expression levels include all members of the miR-200 family known to be involved in the epithelial to mesenchymal transition (EMT) process. Expression levels of 13 of the 47 validated target genes for the downregulated miRNAs were increased more than two-fold. Our data reinforce the importance of the EMT process in the development of ccRCC. For mRNA expression data of these cell lines see GEO Series accession number GSE20491. MicroRNA profiling was performed on two proximal tubular epithelial cell samples (both cell samples were hybridized twice (biological duplicates)) and ten clear cell renal cell carcinoma- derived cell lines (one of which; RCC-JF in duplicate)
Project description:This SuperSeries is composed of the following subset Series: GSE34979: Array-based CGH analysis of ccRCC derived cell lines GSE34981: miRNA transcript levels in ccRCC-derived cell lines and proximal tubular epithelial cell samples Refer to individual Series
Project description:The proteome of clinical tissue samples diagnosed with clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) were evaluated analyzed along with the dataset identifier PXD022018 to establish a potential discriminative biomarker panel of proteins for these tumors subtypes.
Project description:The aim of this study was to compare effect of everolimus on growth of different renal cell carcinoma (RCC) populations and develop design for experiments to measure the early response of everolimus in clear cell RCC (ccRCC) cell lines including renal cancer stem cells. Gene expression profiling using microarray was performed to determine the early response to everolimus after 3 days of treatment with optimizied concentration of drug in two ccRCC cell lines 1) parental clear cell renal cell carcinoma ccRCC-PCSC (HKPCSC -human parental kidney cancer stem cells) and 2) ccRCC-CSC - clear cell renal cell carcinoma -cancer stem cells (HKCSC - human kidney cancer stem cells).
Project description:Renal cell carcinoma (RCC), the third most prevalent urological cancer, claims more than 100,000 lives/year worldwide. The clear cell (ccRCC) is the most common and aggressive subtype of renal cancer. Commonly asymptomatic, more than 30% of ccRCCs are diagnosed when they are already metastatic resulting in a 95% mortality rate and one-third of organ-confined cancers treated by nephrectomy develop metastasis during the follow-up. Diagnosis and monitoring requires expensive and frequent imaging examinations; thereby, finding of diagnostic and prognostic biomarkers to screen, diagnose and monitor renal cancers are clearly needed. Hepatitis A virus receptor/kidney injury molecule 1 (HAVCR1/KIM-1) gene has been claimed to be a susceptibility gene for ccRCC and HAVCR1/KIM-1 ectodomain shedding a predictive biomarker of tumor progression.
Project description:Despite numerous studies reporting deregulated microRNA (miRNA) and gene expression patterns in clear cell renal cell carcinoma (ccRCC), no direct comparisons have been made to its presumed normal counterpart; the renal proximal epithelial tubular cells (PTEC). The aim of this study was to determine the miRNA expression profiles of ten clear cell renal cell carcinoma-derived cell lines and short-term cultures of PTEC, and to correlate these with their gene expression, and copy-number profiles. Using microarray-based methods, a significantly altered expression level in ccRCC cell lines was observed for 23 miRNAs and 1630 genes. The set of miRNAs with significantly decreased expression levels include all members of the miR-200 family known to be involved in the epithelial to mesenchymal transition (EMT) process. Expression levels of 13 of the 47 validated target genes for the downregulated miRNAs were increased more than two-fold. Our data reinforce the importance of the EMT process in the development of ccRCC. For mRNA expression data of these cell lines see GEO Series accession number GSE20491.
Project description:In order to clarify the molecular mechanism involved in renal carcinogenesis, and identify molecular targets for diagnosis and treatment, we analyzed genome-wide gene expression profiles of 15 surgical specimens of clear cell renal cell carcinoma (RCC), compared to normal renal cortex, using a combination of laser microbeam microdissection (LMM) with a cDNA microarray representing 27,648 genes. Tissue samples of surgically-resected clear cell renal cell carcinoma (ccRCC) and their corresponding clinical information were obtained from patients with written informed consent. The total of 15 cancer patients (6 women and 9 men; median age, 66; range, 36-75 years) that had been confirmed histologically as ccRCC were selected for this study. Two to three pieces of cancer tissue had been taken from each patient at the time of radical nephrectomy. Normal tissue had been obtained from the distant region from cancer area in the resected kidney tissue. These samples were immediately embedded in TissueTek OCT compound (Sakura, Tokyo, Japan), frozen, and stored at -80°C. The frozen tissues were sliced into 8-μm sections using a cryostat (Sakura) and then stained with H&E for histological examination. We used LMM technology to collect pure populations of ccRCC cells as well as non-cancerous renal cortex. A mixture of normal renal cortex cells in kidney tissues from 11 patients was prepared as a universal control. Experiments were performed using 6 sets of slides (slide set 1-6 corresponding to ID_REF 1-27648).
Project description:MicroRNAs (miRNAs), non-coding RNAs regulating gene expression, are frequently aberrantly expressed in human cancers. Next-generation deep sequencing technology enables genome-wide expression profiling of known miRNAs and discovery of novel miRNAs at unprecedented quantitative and qualitative accuracy. Deep sequencing was performed on 22 fresh frozen clear cell renal cell carcinoma (ccRCC), 11 non-tumoral renal cortex (NRC) samples and 2 ccRCC cell lines (n=35). The 22 ccRCCs patients belonged to 3 prognostic sub-groups, i.e. Those without disease recurrence, with recurrence and with metastatic disease at diagnosis Deep sequencing was performed on 22 fresh frozen clear cell renal cell carcinoma (ccRCC), 11 non-tumoral renal cortex (NRC) samples and 2 ccRCC cell lines (n=35). The 22 ccRCCs patients belonged to 3 prognostic sub-groups, i.e. Those without disease recurrence, with recurrence and with metastatic disease at diagnosis.
Project description:Clear cell renal cell carcinoma (ccRCC), the major histotype of cancer derived from kidney, is lack of robust prognostic and/or predictive biomarker and powerful therapeutic target. We previously identified that follistatin-like protein 1 (FSTL1) was significantly down-regulated in ccRCC at the transcription level. In the present study, we characterized, for the first time, that FSTL1 immunostaining was selectively positive in the cytoplasm of distal convoluted tubules. The expression of FSTL1 was significantly lower in ccRCC tissues than in adjacent renal tissues (P<0.001), as measured using immunohistochemistry in 69 patients with paired specimens, and lower in most ccRCC cell lines than in human embryonic kidney cells, as measured by quantitative RT-PCR. Multivariate Cox regression analysis in 89 patients with follow-up data showed that FSTL1 expression in tumors conferred a favorable postoperative prognosis independently, with a hazard ratio of 0.325 (95% confidence interval: 0.118-0.894). FSTL1 knockdown promoted anchorage independent growth, mobility, and invasion of ccRCC cell lines and promoted cell cycle from G0/G1 phases into S phase; while over-expression of FSTL1 significantly attenuated cell migration ability in ACHN cells. FSTL1 knockdown resulted in decreased expression of E-cadherin and increased expression of N-cadherin in ccRCC cell lines significantly, indicating that FSTL1 may attenuate epithelial to mesenchymal transition in ccRCC. Microarray assay indicated that NF-κB and HIF-2α pathways were activated following FSTL1 knockdown in ccRCC cells. Our study indicates that FSTL1 serves as a tumor suppressor in ccRCC, up-regulation of FSTL1 in cancer cells may be a candidate target therapy for advanced ccRCC. RNA samples were collected from NRCC-shsiscramble, NRCC-shFSTL1-1 and NRCC-shFSTL1-2 cells. Then samples were hybridized to Affymetrix arrays for mRNA profiling.
Project description:Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice retained >92% of mutations and exhibited similar DNA copy number alterations to corresponding primary tumors. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities. The genomic DNA of clear-cell renal cell carcinoma (ccRCC) primary tumors, tumors growing in immunodeficient mice (tumorgrafts), and normal samples were labeled and hybridized to Affymetrix SNP arrays 6.0.
Project description:BRCA1-associated protein 1 (BAP1) is a member of the ubiquitin C‑terminal hydrolase family of deubiquitinating enzymes and is implicated in transcriptional regulation. The BAP1 gene is mutated in about 10% of patients with clear cell renal cell carcinoma (ccRCC), the most common form of renal cancer, suggesting that BAP1 may be a tumor suppressor. However, whether BAP1 influences the progression of ccRCC tumors expressing WT BAP1 is unclear. Here, we assessed the expression and function of BAP1 using human ccRCC specimens and cell lines.