Identification of the Bacteroides fragilis EcfO regulon 2
Ontology highlight
ABSTRACT: Genome expression study of Bacteroides fragilis strain 638R comparing a EcfO null mutant with an empty vector to a anti-EcfO null mutant containing the EcfO gene on a plasmid under the control of an IPTG inducible promoter. Two chip study with 8 technical replicates on each chip comparing the EcfO overexpressing strain in an anti-EcfO mutant to an empty vector control in a EcfO null mutant.
Project description:Genome expression study of Bacteroides fragilis strain 638R comparing an ecfO null mutant with an empty vector to a reo (anti-ecfO) null mutant containing the ecfO gene on a plasmid under the control of an IPTG inducible promoter. Seven chip study with 8 technical replicates (i.e. Each probe replicated 8 times on the chip) on each chip comparing the ecfO overexpressing strain in a reo (anti-ecfO) mutant to an empty vector control in an ecfO null mutant.
Project description:Genome expression study of Bacteroides fragilis strain 638R comparing a EcfO/anti-EcfO null mutant with an empty vector to a EcfO/anti-EcfO null mutant containing the EcfO gene on a plasmid under the control of a maltose inducible promoter. Two chip study with 8 technical replicates on each chip comparing the EcfO overexpressing strain in a EcfO/anti-EcfO mutant to an empty vector control in the same mutant background.
Project description:Genome expression study of Bacteroides fragilis ATCC25285 strain containing the EcfO gene constitutively expressed from plasmid pFD340 Two chip study with 5 technical replicates on each chip comparing the EcfO overexpressing strain to an empty vector control in the wild type strain.
Project description:Genome expression study of Bacteroides fragilis strain 638R comparing a EcfO null mutant with an empty vector to a anti-EcfO null mutant containing the EcfO gene on a plasmid under the control of an IPTG inducible promoter.
Project description:Genome expression study of Bacteroides fragilis strain 638R comparing a EcfO/anti-EcfO null mutant with an empty vector to a EcfO/anti-EcfO null mutant containing the EcfO gene on a plasmid under the control of a maltose inducible promoter.
Project description:Genome expression study of Bacteroides fragilis strain 638R comparing an ecfO null mutant with an empty vector to a reo (anti-ecfO) null mutant containing the ecfO gene on a plasmid under the control of an IPTG inducible promoter.
Project description:Compare BF638R gene expression during growth in vivo in a rat tissue cage/artificial abscess model, to cells grown in vitro in minimal defined media with either glucose or mucin glycans as sole carbon/energy source 11 chip study with 8 technical replicates on each chip comparing gene expression in vivo in a rat tissue cage model over an 8 day period to in vitro cultures grown to mid-log phase in defined media
Project description:The phylum Bacteroidetes is a major component of the human gut microbiota which has a broad impact on the development and physiology of its host, and a potential role in a wide range of disease syndromes1-3. The predominance of Bacteroidetes and the genus Bacteroides in the distal gut is due in large part to the expansion of paralogous gene clusters, termed Polysaccharide Utilization Loci (PULs), dedicated to the uptake and catabolism of host derived and dietary polysaccharides4,5. It is generally thought that the diversity of PULs is key to Bacteroides successful competition for nutrients in the gut environment6. The nutritive value of the available polysaccharides varies greatly and thus their utilization is hierarchical and strictly controlled. A typical PUL includes regulatory genes that control expression in response to the presence of specific glycan substrates. However the existence of additional regulatory mechanisms has been predicted to explain phenomena such as the hierarchical control, catabolite repression, and the fine tuning of gene expression to match catabolic activity7-9. Using Bacteroides fragilis as a model organism, this report describes a previously unknown layer of regulatory control in which cis-encoded antisense small RNAs (sRNA) act as repressors of the PULsâ catabolic genes. Nearly 30% of B. fragilis PULs are subject to this type of sRNA control and these PULs tend to be more closely linked to the utilization of host-derived glycans than dietary polysaccharides. The findings described here indicate the presence of a global control mechanism that underlies the known regulatory circuits which modulate PUL expression in response to substrate availability, and hence provide novel insight into regulation of the gut Bacteroidetes physiology. This is a 4 chip study with 8 technical replicates on each chip. This was an in vitro, exploratory study to determine if mutation or overexpression of a sRNA associated with the Don locus would affect gene expression. In vitro cultures were grown in defined media with mucin glycans as the sole carbon source. The two chips representing growth of the wild type strain (638R) on mucin glycans were also used in a related study GSE53883 (GSM1303101 and GSM1303102).
Project description:The anaerobe Bacteroides fragilis is a highly aerotolerant, opportunistic pathogen that is an important component of the human intestinal microbiota. Aerotolerance has been linked to a robust oxidative stress response, which in turn is necessary for maximal virulence in a mouse intra-abdominal abscess model. During oxidative stress, there is a dynamic change in gene expression that encompasses a third of the genome, but there is a paucity of information on factors that control this response. A large number of transcription regulators, including about 14 extracytoplasmic function (ECF) sigma factors, are affected by oxidative stress, and one of these, EcfO, was used as a model of ECF sigma factor activity during stress. Genetic and biochemical experiments showed that EcfO was located in an operon with a structurally unique anti-sigma factor, Reo. Cells deleted for EcfO were impaired during exposure to oxygen or other forms of oxidative stress, whereas reo mutants were more resistant to stress. Protein-protein interaction experiments demonstrated that Reo directly interacts with and regulates the activity of EcfO. Expression microarray and chromatin affinity precipitation assays were used to identify target genes regulated by EcfO, and an EcfO recognition sequence was identified. The results revealed that EcfO controls a regulon of novel lipoproteins whose distribution in nature is restricted to members of the Bacteroidetes phylum.