A panel of hepatocellular carcinoma cell lines recapitulates the molecular subtypes of the human disease: A model for targeted drug development
Ontology highlight
ABSTRACT: RNA expression patterns of liver cell lines were compared to those of liver tumors to determine the suitability of cell lines as a model for drug development studies. The cell lines appear to recapitulate liver tumors. Gene expression of 20 individual liver cell lines relative to a liver cell line reference mix containing equal amounts of 19 liver cell lines. The expression data was correllated with expression in liver tumors.
Project description:RNA expression patterns of breast cell lines were compared with a breast cell line mixed reference. Gene expression profiles of 52 individual breast cell lines relative to a breast cell line reference mix containing equal amounts of 10 breast cell lines.
Project description:PD-0332991 is a selective inhibitor of the CDK4/6 kinases with the ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. Here we investigate the role of CDK4/6 inhibition in human ovarian cancer. We examined the effects of PD-0332991 on proliferation, cell-cycle, apoptosis, and Rb phosphorylation using a panel of 40 established human ovarian cancer cell lines. Molecular markers for response prediction, including p16 and Rb, were studied using gene expression profiling, Western blot, and arrayCGH. Multiple drug effect analysis was used to study interactions with chemotherapeutic drugs. Expression of p16 and Rb was studied using immunohistochemistry in a large clinical cohort ovarian cancer patients. Concentration-dependent anti-proliferative effects of PD-0332991were seen in all ovarian cancer cell lines, but varied significantly between individual lines. Rb proficient cell lines with low p16 expression were most responsive to CDK4/6 inhibition. Copy number variations of CDKN2A, Rb, CCNE1, and CCND1 were associated with response to PD-0332991. CDK4/6 inhibition induced G0/G1 cell cycle arrest, blocked Rb phosphorylation in a concentration and time dependent manner, and enhanced the effects of chemotherapy. Rb proficiency with low p16 expression was seen in 97/262 (37%) of ovarian cancer patients and associated with adverse clinical outcome (progression free survival, adjusted relative risk 1.49, 95%CI 0.99-2.22, p =0.054). PD-0332991 shows promising biologic activity in ovarian cancer cell lines. Assessment of Rb and p16 expression may help select patients most likely to benefit from CDK4/6 inhibition in ovarian cancer. Gene expression of 40 individual ovarian cell lines relative to an ovarian cell line reference mix containing equal amounts of 41 ovarian cell lines (including OCC-1 which was later identified as originating from mouse). The expression data was correllated with cell line growth response to CDK 4/6 inhibitor PD-0332991 to identify genes associated with drug sensitivity and resistance.
Project description:Breast cancer is a heterogeneous disease comprised of at least five major subtypes. Luminal subtype tumors confer a more favourable patient prognosis, which is in part, attributed to the Estrogen Receptor-alpha (ER) positivity and anti-hormone responsiveness of these tumors. Expression of the forkhead box transcription factor, FOXA1, also correlates with the luminal subtype and patient survival, but is present in a subset of ER-negative tumors. Similarly, FOXA1 is consistently expressed in luminal breast cancer cell lines even in the absence of ER. In contrast, basal breast cancer cell lines do not express FOXA1, and loss of FOXA1 in luminal cells increases migration and invasion, characteristics of the basal subtype. To delineate an ER-independent role for FOXA1 in maintaining the luminal phenotype, and hence a more favourable prognosis, we performed cDNA microarray analyses on luminal FOXA1-positive, ER-positive (MCF7, T47D) and FOXA1-positive, ER-negative (MDA-MB-453, SKBR3) cell lines in the presence or absence of transient FOXA1 silencing. This resulted in three FOXA1 transcriptomes: (1) a luminal-signature (consistent across cell lines), (2) an ER-positive signature (restricted to MCF7 and T47D) and (3) an ER-negative signature (restricted to MDA-MB-453 and SKBR3). Use of Gene Set Enrichment Analyses (GSEA) as a phenotyping tool revealed that FOXA1 silencing resulted in a transcriptome shift from luminal to basal gene expression signatures. FOXA1 binds to both luminal and basal genes within luminal breast cancer cells, suggesting that it not only transactivates luminal genes, but also represses basal-associated genes. From these results we conclude that FOXA1 controls plasticity between basal and luminal cells, playing a dominant role in repressing the basal phenotype, and thus tumor aggressiveness, in luminal breast cancer cells. Although it has been proposed that FOXA1-targeting agents may be useful for treating luminal tumors, these data suggest that this approach may promote transitions toward a more aggressive cancer. FOXA1 siRNA treated breast cell lines compared directly to nonspecific siRNA treated cell lines using Agilent 4X44 microarrays.
Project description:34 NSCLC cell lines were transcriptionally profiled against a reference mix of 45 NSCLC cell lines to look subtype specific differential gene expression 34 individual cell lines were compared to a reference mix consiting of 45 NSCLC cell lines
Project description:Knock-down of ovarian cancer amplification target ADRM1 leads to down regulation of GIPC1 and up-regulation of RECK. Among 20q13-amplified genes in ovarian cancer, ADRM1 overexpression was the most highly correlated with amplification, and was significantly upregulated with respect to stage, recurrence and metastasis. In addition, overexpression of ADRM1 correlated significantly with shorter time to recurrence and overall survival. Herein, array-CGH and microarray expression of ovarian cancer cell lines, provides evidence consistent with the primary tumor data that ADRM1 is a 20q13 amplification target. Knock-down of ADRM1 in amplified ovarian cell line OAW42 results in down-regulation of growth factor GIPC1 and up-regulation of tumor-suppressor RECK RNA and protein. In our dataset of 141 ovarian primary tumors, ADRM1 overexpression significantly correlates with GIPC1 overexpression. In addition, there is a significant anticorrelation between ADRM1 overexpression and RECK expression. Further research is necessary to determine whether targeting knock-down of ADRM1 in 20q13-amplified ovarian cancers results in growth inhibition and tumor suppression via downstream targets GIPC1 and RECK. ADRM1 siRNA treated OAW42 compared directly to untreated or nonspecific RNA treated OAW42
Project description:RNA from treated cell lines are compared to RNA from matched untreated samples on the same chip to assess differential gene expression. RNA from treated cell lines are compared to RNA from matched untreated samples on the same chip to assess differential gene expression.
Project description:RNA expression patterns of liver cell lines were compared to those of liver tumors to determine the suitability of cell lines as a model for drug development studies. The cell lines appear to recapitulate liver tumors.
Project description:Selected genes within the 1 Mb minimal amplified region on 20q13.3 driven by ADRM1 in gastric cancer cell line AGS were analyzed by Gene expression Microarray. Gene Expression of ADRM1, HRH3, MTG2, LAMA5 and OSBPL2 were then compared in 16 Gastric cancer cell lines to a reference composed of mixed gastric cancer cell lines.
Project description:About half of all melanomas harbor a constitutively active mutant BRAFV600E/K kinase that can be selectively inhibited by targeted BRAF inhibitors (BRAFi). While patients treated with BRAFi initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. We observe significant elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein are also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction in levels of endogenous WNT5A in melanoma decreases cell growth, increases apoptosis in response to BRAFi challenge, and decreases the activity of pro-survival AKT signaling. Overexpression of WNT5A conversely promotes melanoma growth and tumorigenesis and activates AKT signaling. Similar to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibits growth, sensitizes melanoma cells to BRAFi, and reduces AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which then acts through FZD7 and RYK to promote AKT signaling, leading to increased growth and therapeutic resistance. Increased WNT5A expression in BRAFi-resistant melanomas also correlates with an associated transcriptional signature, which identifies potential therapeutic targets to reduce clinical resistance to BRAFi. Expression of WNT5A-correlated genes was compared in melanoma cell lines generated to be resistant to PLX4032 and the their associated naïve parental line Basal expression of the WNT5A-correlated genes was also measured in experiments comparing each naïve line to a mixed reference pool containing equal amounts of 47 melanoma cell lines.
Project description:Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by Glycogen Synthase Kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This prompted us to examine the relationship between MITF, endolysosomal biogenesis and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the Tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-Catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies (MVBs) into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in MVB biosynthesis, which in turn increased Wnt signaling, generating a positive feed-back loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. Expression of selected Lysosomal genes and CLEAR element plus MITF were compared in 51 melanoma cell lines to a mixed reference pool containing equal amounts of 47 melanoma cell lines.