Cardiac over-expression of Med13, non-cardiac tissue analysis
Ontology highlight
ABSTRACT: Med13 cardiac over-expression regulates obesity. Liver, WAT and BAT from alphaMHC-Med13 TG mice was analyzed Liver, WAT and BAT from Med13 alphaMHC transgenic mice and wild type littermates
Project description:This SuperSeries is composed of the following subset Series: GSE35902: Cardiac over-expression of Med13 GSE35903: Cardiac over-expression of Med13, non-cardiac tissue analysis Med13 cardiac transgenic mice were back-crossed 4 or more generations to C57Bl6 mice. Refer to individual Series
Project description:Med13 cardiac over-expression regulates cardiac gene expression and metabolism Hearts from Med13 alphaMHC transgenic mice and wild type littermates
Project description:To identify the target genes of integrated stress reponse (ISR) in WAT and BAT, we have employed whole genome microarray expression in WAT and BAT specific Fv2E-PERK transgenic mice. The mAP::Fv2E-PERK transgenic mice were injected by AP20187 or mock.
Project description:The proteome cargo of extracellular vesicles released from brown adipose tissue (BAT) and from white adipose tissue (WAT) of mice subjected to cold exposure (4°C) was analysed by a TMT-based quantitative proteomic procedure in order to obtain new information on the processes of thermogenesis.
Project description:Compare miRNA expression profiles in epididymal white adipose tissue (WAT), interscapular brown adipose tissue (BAT) and skeletal muscle from wild-type C57BL/6J mice
Project description:Classical brown adipocytes in interscapular BAT (Myf-5 derived) and inducible beige cells in WAT (non-Myf-5 derived) have distinct developmental origins, although both cell types have morphological and biochemical characteristics of brown fat such as the expression of UCP1. This raises an important question as to how similar the two types of brown adipocytes are at molecular and functional levels. To this end, we employed RNA-seq to systematically determine the transcriptional signatures unique to each cell type.
Project description:Brown and beige fats generate heat via uncoupled respiration to defend against cold, mechanistically, through the action of a network of transcription factors and cofactors. Here we globally profiled long noncoding RNAs (lncRNAs) gene expression during thermogenic adipocyte formation and identified Brown fat lncRNA 1 (Blnc1) as a novel nuclear lncRNA that promotes brown and beige adipocyte differentiation and function by forming a feedforward regulatory loop with EBF2 to drive adipogenesis toward thermogenic phenotype. LncRNAs expression were measured in BAT and WAT from mice injected saline/CL and during brown adipocyte differentiation with two replicates using Arraystar Mouse LncRNA microarray V2.0
Project description:Brown adipose tissue (BAT) plays an essential role in metabolic homeostasis by dissipating energy via thermogenesis through uncoupling protein 1 (Ucp1). Previously, we reported that the TATA-binding protein Associated Factor 7L (Taf7l) is an important regulator of white adipose tissue (WAT) differentiation. Here, we show that Taf7l also serves as a molecular switch between brown fat and muscle lineages in vivo and in vitro. In adipose tissue, Taf7l containing TFIID complexes associate with PPAR to mediate DNA looping between distal enhancers and core promoter elements. Our findings suggest that presence of the tissue-specific Taf7l subunit in TFIID functions to promote long-range chromatin interactions during BAT lineage specification. mRNA-seq expression profiling wild type and Taf7l knockout interscapular brown adipose tissue (BAT)
Project description:This study explored the role of the growth hormone (GH) / insulin-like growth factor 1 (IGF-1) axis on the life-long caloric restriction (CR)-associated remodeling of white adipose tissue (WAT). Adipocyte size and gene expression profiles, using high-density oligonucleotide microarrays, were analyzed in WAT of six- to seven-month old wild Wistar rats fed ad libitum (AL) or subjected to a 30% caloric restriction (CR), and heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (Tg). While not significant in Tg rats, adipocyte size was significantly reduced in CR rats compared with AL rats. The microarray data based on the principal component analysis demonstrated that the gene expression profile of CR rats markedly differed from the AL rats, while Tg hardly differed, suggesting that CR-associated WAT remodeling was predominantly regulated in a GH/IGF-1-independent manner. The gene cluster with the largest change induced by CR included several genes involved in lipid biosynthesis and inflammation. Moreover, many of the genes transcriptionally regulated by sterol regulatory element binding proteins (SREBPs) were found in the cluster related to lipid biosynthesis. Real-time reverse transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its down-stream targets was particularly up-regulated in CR rats compared with SREBP-2 and its down-stream targets. Our findings suggest that SREBP-1 is a major transcription factor in CR-associated remodeling of WAT, and might be one of the key regulators of the anti-aging and pro-longevity effects of CR. The three groups: GH antisense, caloric restriction, and the control were compared by using PCA.