Transcription profile of fetal human CD140a-defined OPC differentiation in vitro
Ontology highlight
ABSTRACT: Human fetal dissociates from 19-22 week gestational age were magnetically sorted for CD140a antigen. CD140a-defined OPCs were plated into serum free conditions and allowed to differentiate in the absence of growth factors or mitogens. RNA was extracted from cells immediately following isolation and every day for 4 days. To block differentiation, matched cells were cultured in the presence of PDGF-AA (10ng/ml). This treatment prevents the acquisition of O4-positive oligodendrocyte cell fate and delays MBP mRNA expression by human CD140a-sorted OPCs. 29 samples, 4 time points, 2 media conditions, at least three biological replicates per time point and media condition
Project description:Human fetal dissociates from 19-22 week gestational age were magnetically sorted for CD140a antigen. CD140a-defined OPCs were plated into serum free conditions and allowed to differentiate in the absence of growth factors or mitogens. RNA was extracted from cells immediately following isolation and every day for 4 days. To block differentiation, matched cells were cultured in the presence of PDGF-AA (10ng/ml). This treatment prevents the acquisition of O4-positive oligodendrocyte cell fate and delays MBP mRNA expression by human CD140a-sorted OPCs.
Project description:The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFaR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133- positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133+CD140a- cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133+CD140a- NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133+CD140a+ cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133+CD140a- cells. As human CD133+ cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain. 12 samples, 4 groups (FACS-sorted cell populations),3 replicates in each group, each replicate is from a separate patient sample
Project description:Stem cell biology has garnered much attention due to its potential to impact human health through disease modeling and cell replacement therapy. This is especially pertinent to myelin-related disorders such as multiple sclerosis and leukodystrophies where restoration of normal oligodendrocyte function could provide an effective treatment. Progress in myelin repair has been constrained by the difficulty in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs but significant advances are currently hindered by heterogeneous differentiation strategies that lack reproducibility. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through a defined series of developmental transitions into a pure population of highly expandable OPCs in ten days. These OPCs robustly differentiate into myelinating oligodendrocytes both in vitro and in vivo. Our results demonstrate that pluripotent stem cells can provide a pure population of clinically-relevant, myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development, drug screening, and potential cell-based remyelinating therapies. 6 total samples were analyzed. Pluripotent epiblast stem cells (EpiSCs) were differentiated to patterned neural rosettes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. OPCs and oligodedrocytes were analyzed at two separate passages (3 and 11).
Project description:The mechanisms underlying the specification of oligodendrocyte fate from multipotent neural progenitor cells (NPCs) in developing human brain are unknown. In this study, we sought to identify antigens sufficient to distinguish NPCs free from oligodendrocyte progenitor cells (OPCs). We investigated the potential overlap of NPC and OPC antigens using multicolor fluorescence-activated cell sorting (FACS) for CD133/PROM1, A2B5, and CD140a/PDGFaR antigens. Surprisingly, we found that CD133, but not A2B5, was capable of enriching for OLIG2 expression, Sox10 enhancer activity, and oligodendrocyte potential. As a subpopulation of CD133- positive cells expressed CD140a, we asked whether CD133 enriched bone fide NPCs regardless of CD140a expression. We found that CD133+CD140a- cells were highly enriched for neurosphere initiating cells and were multipotent. Importantly, when analyzed immediately following isolation, CD133+CD140a- NPCs lacked the capacity to generate oligodendrocytes. In contrast, CD133+CD140a+ cells were OLIG2-expressing OPCs capable of oligodendrocyte differentiation, but formed neurospheres with lower efficiency and were largely restricted to glial fate. Gene expression analysis further confirmed the stem cell nature of CD133+CD140a- cells. As human CD133+ cells comprised both NPCs and OPCs, CD133 expression alone cannot be considered a specific marker of the stem cell phenotype, but rather comprises a heterogeneous mix of glial restricted as well as multipotent neural precursors. In contrast, CD133/CD140a-based FACS permits the separation of defined progenitor populations and the study of neural stem and oligodendrocyte fate specification in the human brain.
Project description:Human fetal tissue dissociates between 18-22wk gestational age were FACS sorted on the basis of CD140a (PDGFRA) and O4 antigens. Each population was profiled immediately following FACS. 20 samples, 4 groups (FACS-sorted cell populations), between 3 and 6 replicates in each group, each replicate is from a separate patient sample
Project description:Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction.
Project description:To investigate the heterogeneity of lung CD140a+ mesenchymal cells (fibroblasts) and identify the specific lung fibroblast subset, we purified CD140a+ lung cells using CD140a-EGFP reporter mice for a higher-resolution scRNA-seq.
Project description:We report the generation of induced oligodendrocyte precursor cells (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to convert mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures that resemble OPCs. We compared the global gene expression pattern of iOPCs, fibroblasts, primary OPCs from the neonatal rat brain, and their differentiated progeny. We purified iOPCs by O4 immunopanning three weeks after infection and extracted total RNA. Acutely isolated rat cortical OPCs were either used directly for RNA extraction or expanded in mitogen-containing media for 24h before switching into differentiation medium, lacking PDGF/NT-3 and containing T3. Cells were harvested for microarray analysis 3 and 6 days after induction of differentiation.
Project description:Glial progenitor cells (GPCs) pervade the human brain. These cells express gangliosides recognized by MAb A2B5, and some but not all can generate oligodendrocytes. Since some A2B5+ GPCs express PDGFa receptor (PDGFRa), which is critical to oligodendrocyte development, we asked if PDGFRa-directed sorting might isolate oligodendrocyte-competent progenitors. We used FACS to sort PDGFRa+ cells from the second trimester fetal human forebrain, based on expression of the PDGFRa epitope CD140a. CD140a+ cells could be maintained as mitotic progenitors that could be instructed to either oligodendrocyte or astrocyte phenotype. Transplanted CD140a+ cells robustly myelinated the hypomyelinated shiverer mouse brain. Microarray confirmed that CD140a+ cells differentially expressed PDGFRA, NG2, OLIG1/2, NKX2.2 and SOX2. Some expressed CD9, thereby defining a CD140a+/CD9+ fraction of oligodendrocyte-biased progenitors. CD140a+ cells differentially expressed genes of the PTN-PTPRZ1, wnt, notch and BMP pathways, suggesting the interaction of self-renewal and fate-restricting pathways in these cells, while identifying targets for their mobilization and instruction. 10 samples, 5 CD140a+, and 5 CD140a- sorted samples for individual fetal human brain
Project description:Many studies have already shown the reprogramming of somatic cells into other cell types such as neural stem cells, blood progenitor cells, and hepatocytes by inducing combinations of transcription factors. One of the recent development in cellular reprogramming is the direct reprogramming, that can change cell fate towards different lineages. This strategy provides an alternative to the use of pluripotent stem cells ruling out the concerns of tumorigenicity caused by undifferentiated cell populations. Here, we generated induced oligodendrocyte progenitor cells (iOPCs) from mouse fibroblasts by direct reprogramming. The generated iOPCs are homogenous, self-renewing, and multipotent. Once differentiated, the somatic stem cells exhibit morphological and molecular characteristics of oligodendrocyte progenitor cells (OPCs). Thus, we demonstrated that terminally differentiated somatic cells can be converted into functional iOPCs by induction of transcription factors offering a new strategies to cure myelin disorders. To identify the global gene expression profiles of iOPCs, we analyzed total 6 samples.