Do globins in the microaerophile Campylobacter jejuni function in nitrosative stress tolerance under oxygen limitation?
Ontology highlight
ABSTRACT: This SuperSeries is composed of the following subset Series: GSE38114: Exposure of microaerobic Campylobacter jejuni to 10 micromolar NOC-5 & NOC-7 GSE38115: Exposure of oxygen limited Campylobacter jejuni to 10 micromolar NOC-5 & NOC-7 Refer to individual Series
Project description:Two batch cultures of Wild-type C. jejuni NCTC 11168 were grown in 100 ml volumes of Mueller-Hinton broth in 250 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10 % Oxygen, 10 % Carbon dioxide, 80 % Nitrogen) from Don Whitley Scientific, Ltd which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached 0.010 mM NOC-5 & NOC-7 was added to one of the cultures. After a 15 minute exposure samples of both treated and untreated cells were harvested into phenol/ethanol to stabilize the RNA and total RNA was purified using QiagenM-bM-^@M-^Ys RNeasy Mini kit (as recommended by the suppliers) prior to use in microarray analysis. Batch cultures of Wild-type C. jejuni NCTC 11168 were grown in 100 ml volumes of Mueller-Hinton broth in 250 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10 % Oxygen, 10 % Carbon dioxide, 80 % Nitrogen) from Don Whitley Scientific, Ltd which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached 0.25 mM GSNO was added to half of the cultures. After a 10 minute exposure, 30 ml samples of both treated and untreated cells were mixed immediately on ice with 3.56 ml 100% ethanol and 185 M-BM-5l phenol to stabilize the RNA. The cells were subsequently harvested by centrifugation. Total RNA was purified by using a Qiagen RNeasy Mini kit as recommended by the supplier. Equivalent amounts of RNA (15 M-NM-<g) from control and test cultures were used as template for synthesis of labelled cDNA. Labelling was done by using dCTP nucleotide analogues containing either Cy3 or Cy5 fluorescent dyes. RNA was primed with 9 M-NM-<g pd(N)6 random hexamers (Amersham Biosciences). For annealing, the mixture was incubated for 10 min at 65oC and then 10 min at room temperature. Each reaction mixture (0.5 mM dATP, dTTP and dGTP, 0.2 mM dCTP, 0.1 mM DTT (Invitrogen) and 1 mM Cy3-dCTP or Cy5-dCTP, total volume 25ul) was incubated for 3 h at 42 oC with 200 U of Superscript III RNase-H Reverse Transcriptase (Invitrogen). The reaction was terminated by the addition of 5u1 mM NaOH and heating the tube to 65 oC for 10 min to hydrolyse the RNA. Then it was neutralised with 5ul 1M HCl and 1 M TE (pH 8). Purification of cDNA was done with a PCR purification kit (Qiagen). The cDNA was eluted and resuspended in 30 M-NM-<l elution buffer (Qiagen, supplied in kit). Each slide set (control slide and dye-swap) was prepared as follows: For control slide Cy3-dCTP labelled control cDNA was mixed with Cy5-dCTP labelled test cDNA. For dye-swap slide Cy5-dCTP labelled control cDNA was mixed with Cy3-dCTP labelled test cDNA. This is made for compensate possible differences in the labelled nucleotides incorporation. The slides used were C. jejuni OciChipM-BM-. arrays from Ocimum Biosolutions. The cDNA mixture for each slide was dried by evaporation for approximately 35 min in a SPD 121P SpeedVacM-BM-. (Thermo Savant, Waltham, MA, USA) The dry cDNA was resuspended in pre-warmed (42M-BM-:C) salt-based hybridisation buffer (Ocimum Biosolutions) and was heated to 95 M-BM-0C for 3 min and then placed on ice for 3 min. The spoted area of the slide (located with an array finder) was enclosed within a gene frame (MWG/Ocimum). The cDNA suspension was distributed through the inner space of the gene frame and enclosed with an air-tight coverslip. The slides were incubated for 16-24 hours at 42M-BM-: C in sealed MWG hybridisation chambers shaken in a water bath. After incubation, gene frames and coverslips were removed and slides washed sequentially in 2x, 1x, 0.2x y 0.1x SSC buffer, by shaking for 5 minutes at 80 rpm at 37M-BM-: C pre-warmed buffer. (2x buffer was supplemented with 1% SDS). Then the slides were dried by centrifugation at 250 x g for 5 min. Slides were scanned using an Affymetrix 428 scanner. The processing of images and quantification of the microarrays signal was done using software from Biodiscovery Inc (Imagene, version 4.0 and Genesight, version 4.0). Spots with signal intensity lower than background or other significant blemishes were eliminated from subsequent processing. Mean values from each channel were then log2 transformed and normalised using the Subtract by Mean method to remove intensity-dependent effects in the log2 (ratios) values. The Cy3/Cy5 fluorescent ratios were calculated from the normalised values. Significance analysis of the data used the StudentM-bM-^@M-^Ys t test to determine the probability that the average of the experimental replicates was significantly different from the average of the control replicates. p-values for the data were calculated by treating each slide as a repeat using Genesight 4. Genes differentially regulated M-bM-^IM-% 2-fold and displaying a p-value of M-bM-^IM-$ 0.05 were defined as being statistically significant and differentially transcribed.
Project description:Batch cultures of Wild-type C. jejuni NCTC 11168 were grown in 200 ml volumes of Mueller-Hinton broth in 250 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10 % Oxygen, 10 % Carbon dioxide, 80 % Nitrogen) from Don Whitley Scientific, Ltd which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached 0.010 mM NOC-5 & NOC-7 was added to one of the cultures. After a 15 minute exposure samples of both treated and untreated cells were harvested into phenol/ethanol to stabilize the RNA and total RNA was purified using QiagenM-bM-^@M-^Ys RNeasy Mini kit (as recommended by the suppliers) prior to use in microarray analysis. Batch cultures of Wild-type C. jejuni NCTC 11168 were grown in 200 ml volumes of Mueller-Hinton broth in 250 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10 % Oxygen, 10 % Carbon dioxide, 80 % Nitrogen) from Don Whitley Scientific, Ltd which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached 0.25 mM GSNO was added to half of the cultures. After a 10 minute exposure, 30 ml samples of both treated and untreated cells were mixed immediately on ice with 3.56 ml 100% ethanol and 185 M-BM-5l phenol to stabilize the RNA. The cells were subsequently harvested by centrifugation. Total RNA was purified by using a Qiagen RNeasy Mini kit as recommended by the supplier. Equivalent amounts of RNA (15 M-NM-<g) from control and test cultures were used as template for synthesis of labelled cDNA. Labelling was done by using dCTP nucleotide analogues containing either Cy3 or Cy5 fluorescent dyes. RNA was primed with 9 M-NM-<g pd(N)6 random hexamers (Amersham Biosciences). For annealing, the mixture was incubated for 10 min at 65oC and then 10 min at room temperature. Each reaction mixture (0.5 mM dATP, dTTP and dGTP, 0.2 mM dCTP, 0.1 mM DTT (Invitrogen) and 1 mM Cy3-dCTP or Cy5-dCTP, total volume 25ul) was incubated for 3 h at 42 oC with 200 U of Superscript III RNase-H Reverse Transcriptase (Invitrogen). The reaction was terminated by the addition of 5ul 1 mM NaOH and heating the tube to 65 oC for 10 min to hydrolyse the RNA. Then it was neutralised with 5ul 1 M HCl and 1 M TE (pH 8). Purification of cDNA was done with a PCR purification kit (Qiagen). The cDNA was eluted and resuspended in 30 M-NM-<l elution buffer (Qiagen, supplied in kit). Each slide set (control slide and dye-swap) was prepared as follows: For control slide Cy3-dCTP labelled control cDNA was mixed with Cy5-dCTP labelled test cDNA. For dye-swap slide Cy5-dCTP labelled control cDNA was mixed with Cy3-dCTP labelled test cDNA. This is made for compensate possible differences in the labelled nucleotides incorporation. The slides used were C. jejuni OciChipM-BM-. arrays from Ocimum Biosolutions. The cDNA mixture for each slide was dried by evaporation for approximately 35 min in a SPD 121P SpeedVacM-BM-. (Thermo Savant, Waltham, MA, USA) The dry cDNA was resuspended in pre-warmed (42M-BM-:C) salt-based hybridisation buffer (Ocimum Biosolutions) and was heated to 95 M-BM-0C for 3 min and then placed on ice for 3 min. The spoted area of the slide (located with an array finder) was enclosed within a gene frame (MWG/Ocimum). The cDNA suspension was distributed through the inner space of the gene frame and enclosed with an air-tight coverslip. The slides were incubated for 16-24 hours at 42M-BM-: C in sealed MWG hybridisation chambers shaken in a water bath. After incubation, gene frames and coverslips were removed and slides washed sequentially in 2x, 1x, 0.2x y 0.1x SSC buffer, by shaking for 5 minutes at 80 rpm at 37M-BM-: C pre-warmed buffer. (2x buffer was supplemented with 1% SDS). Then the slides were dried by centrifugation at 250 x g for 5 min. Slides were scanned using an Affymetrix 428 scanner. The processing of images and quantification of the microarrays signal was done using software from Biodiscovery Inc (Imagene, version 4.0 and Genesight, version 4.0). Spots with signal intensity lower than background or other significant blemishes were eliminated from subsequent processing. Mean values from each channel were then log2 transformed and normalised using the Subtract by Mean method to remove intensity-dependent effects in the log2 (ratios) values. The Cy3/Cy5 fluorescent ratios were calculated from the normalised values. Significance analysis of the data used the StudentM-bM-^@M-^Ys t test to determine the probability that the average of the experimental replicates was significantly different from the average of the control replicates. p-values for the data were calculated by treating each slide as a repeat using Genesight 4. Genes differentially regulated M-bM-^IM-% 2-fold and displaying a p-value of M-bM-^IM-$ 0.05 were defined as being statistically significant and differentially transcribed.
Project description:Two batch cultures of wild-type C. jejuni NCTC 11168 were grown in 200 ml volumes of Mueller-Hinton broth in 500 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10% Oxygen, 10% Carbon dioxide, 80% Nitrogen) from Don Whitley Scientific, Ltd, which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached, a custom-made diffusion capsule (as described in Pirt, 1971) containing chicken caecal contents was placed for 10, 30, or 60 minutes. After the exposure, samples of both treated and untreated cells were harvested into phenol/ethanol to stabilize the RNA and total RNA was purified using Qiagen's RNeasy Mini kit (as recommended by the suppliers) prior to use in microarray analysis. Batch cultures of wild-type C. jejuni NCTC 11168 were grown in 200 ml volumes of Mueller-Hinton broth in 500 ml baffled flasks. Microaerophilic conditions were generated using a MACS-VA500 microaerophilic work station (10% Oxygen, 10% Carbon dioxide, 80% Nitrogen) from Don Whitley Scientific, Ltd, which also maintained the growth temperature at 42 M-BM-:C. When mid-exponential phase was reached, a custom-made diffusion capsule (as described in Pirt, 1971) containing chicken caecal contents was placed for 10, 30, or 60 minutes. After the exposure, 30 ml samples of both treated and untreated cells were mixed immediately on ice with 3.56 ml 100% ethanol and 185 M-BM-5l phenol to stabilize the RNA. The cells were subsequently harvested by centrifugation. Total RNA was purified by using a Qiagen RNeasy Mini kit as recommended by the supplier. Equivalent amounts of RNA (15 M-NM-<g) from control and test cultures were used as template for synthesis of labelled cDNA. Labelling was done by using dCTP nucleotide analogues containing either Cy3 or Cy5 fluorescent dyes. RNA was primed with 9 M-NM-<g pd(N)6 random hexamers (Amersham Biosciences). For annealing, the mixture was incubated for 10 min at 65oC and then 10 min at room temperature. Each reaction mixture (0.5 mM dATP, dTTP and dGTP, 0.2 mM dCTP, 0.1 mM DTT (Invitrogen) and 1 mM Cy3-dCTP or Cy5-dCTP, total volume 25ul) was incubated for 3 h at 42 oC with 200 U of Superscript III RNase-H Reverse Transcriptase (Invitrogen). The reaction was terminated by the addition of 5ul 1 mM NaOH and heating the tube to 65 oC for 10 min to hydrolyse the RNA. Then it was neutralised with 5ul 1 M HCl and 1 M TE (pH 8). Purification of cDNA was done with a PCR purification kit (Qiagen). The cDNA was eluted and resuspended in 30 M-NM-<l elution buffer (Qiagen, supplied in kit). Each slide set (control slide and dye-swap) was prepared as follows: For the control slide, Cy3-dCTP labelled control cDNA was mixed with Cy5-dCTP labelled test cDNA. For the dye-swap slide, Cy5-dCTP labelled control cDNA was mixed with Cy3-dCTP labelled test cDNA. This is made to compensate for possible differences in the labelled nucleotides incorporation. The slides used were C. jejuni OciChipM-BM-. arrays from Ocimum Biosolutions. The cDNA mixture for each slide was dried by evaporation for approximately 35 min in a SPD 121P SpeedVacM-BM-. (Thermo Savant, Waltham, MA, USA). The dry cDNA was resuspended in pre-warmed (42M-BM-:C) salt-based hybridisation buffer (Ocimum Biosolutions) and was heated to 95 M-BM-0C for 3 min and then placed on ice for 3 min. The spotted area of the slide (located with an array finder) was enclosed within a gene frame (MWG/Ocimum). The cDNA suspension was distributed through the inner space of the gene frame and enclosed with an air-tight coverslip. The slides were incubated for 16-24 hours at 42M-BM-: C in sealed MWG hybridisation chambers shaken in a water bath. After incubation, gene frames and coverslips were removed and slides washed sequentially in 2x, 1x, 0.2x y 0.1x SSC buffer, by shaking for 5 minutes at 80 rpm at 37M-BM-: C pre-warmed buffer. (2x buffer was supplemented with 1% SDS). Then the slides were dried by centrifugation at 250 x g for 5 min. Slides were scanned using an Affymetrix 428 scanner. The processing of images and quantification of the microarrays signal was done using software from Biodiscovery Inc. (ImaGene, version 4.0 and GeneSight, version 4.0). Spots with signal intensity lower than background or other significant blemishes were eliminated from subsequent processing. Mean values from each channel were then log2 transformed and normalised using the Subtract by Mean method to remove intensity-dependent effects in the log2 (ratios) values. The Cy3/Cy5 fluorescent ratios were calculated from the normalised values. Significance analysis of the data used the Student's t test to determine the probability that the average of the experimental replicates was significantly different from the average of the control replicates. p-values for the data were calculated by treating each slide as a repeat using Genesight 4. Genes differentially regulated M-bM-^IM-% 2-fold and displaying a p-value of M-bM-^IM-$ 0.05 were defined as being statistically significant and differentially transcribed.
Project description:The transcriptional response of Escherichia coli MG1655 to NO released from NOC-5 and NOC-7 under anerobic conditions in contiuous chemostat culture on chemically defined minimal media
Project description:Escherichia coli strain MG1655 response to NO released from NOC compounds. Under contiuous steady state chemostat conditions, in chemically defined media.
Project description:Candida albicans is an opportunistic pathogenic yeast that is commensally found in variety of host niches. Rhb1 serves as an positive regulator of Tor1 kinase which is the central component of the TOR signaling in controlling several virulence factors. Here, we used microarray to determined changes in transcript profile while the cell lacks the RHB1 gene. 10 array generated by six batchs of individual experiment (from cell isolation to culture); each included one flask of wild type culture (SC5314) and one flask of rhb1M-bM-^HM-^F (CCT-D1)mutant culture.
Project description:Nucleoid-associated proteins (NAPs) are known to fold bacterial DNA and influence global transcription. Incompatibility P-7 plasmid pCAR1 carries three genes encoding NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. Because previous reports about plasmid-encoded NAPs mainly focused on H-NS homologs, functions and importance of different kinds of NAPs encoded on a plasmid remained unknown. Here, we assessed the effects of single or double disruption of pmr, pnd, and phu in a host P. putida KT2440. When pmr and pnd or pmr and phu were disrupted simultaneously, stability and conjugation frequency of pCAR1 decreased significantly. In the comprehensive phenotypes comparisons, host availabilities of some compounds, which were reduced by pCAR1carriage, were restored by NAP-gene(s)-disruption. Transcriptome analyses showed that Pmr and Pnd have different regulons, whereas Phu mainly supports their gene regulation. These cooperative functions of the three NAPs were not simply due to protein-protein interactions because hetero-oligomers of them were not detected in pull-down assays. Our present study is the first report about the cooperative function of plasmid-encoded different kinds of NAPs, which show no homology with each other. The NAPs-dependent change of chromosomal RNA maps in early exponential phases.
Project description:Nucleoid-associated proteins (NAPs) are known to fold bacterial DNA and influence global transcription. Incompatibility P-7 plasmid pCAR1 carries three genes encoding NAPs: H-NS family protein Pmr, NdpA-like protein Pnd, and HU-like protein Phu. Because previous reports about plasmid-encoded NAPs mainly focused on H-NS homologs, functions and importance of different kinds of NAPs encoded on a plasmid remained unknown. Here, we assessed the effects of single or double disruption of pmr, pnd, and phu in a host P. putida KT2440. When pmr and pnd or pmr and phu were disrupted simultaneously, stability and conjugation frequency of pCAR1 decreased significantly. In the comprehensive phenotypes comparisons, host availabilities of some compounds, which were reduced by pCAR1carriage, were restored by NAP-gene(s)-disruption. Transcriptome analyses showed that Pmr and Pnd have different regulons, whereas Phu mainly supports their gene regulation. These cooperative functions of the three NAPs were not simply due to protein-protein interactions because hetero-oligomers of them were not detected in pull-down assays. Our present study is the first report about the cooperative function of plasmid-encoded different kinds of NAPs, which show no homology with each other. The NAPs-dependent change of RNA maps in early exponential phases.
Project description:Impacts of plasmid carriage on its host cell were comprehensively analyzed using conjugative plasmid pCAR1 in the three different kinds of hosts, Pseudomonas putida KT2440, P. aeruginosa PAO1, and P. fluorescens Pf0-1. Various analyses of the host phenotype showed that pCAR1 carriage reduced host fitness, swimming motility, and resistances to osmotic- or pH-stress, and brought about the alterations of primary metabolic capacities in the TCA cycle or those several steps away from the TCA cycle in the host cells. Growth phase-dependent transcriptome analyses were performed with the classification of the annotated genes based on their identities among the three hosts and their putative functions. pCAR1 carriage affected host transcriptome more greatly at the transition and stationary phases in each host. The transcriptome responses were more similar between KT2440 and PAO1 than between other host combinations, and many genes, such as for ribosomal proteins, F-type ATPase, and RNAP core, in both strains were commonly not suppressed in their stationary phases. These responses may have resulted in the reduction of host fitness, motility, and stress resistances. Host-specific responses to plasmid carriage were transcriptional changes of genes on putative prophage or foreign DNA regions. The extent of the impacts in host phenotypes and transcriptomes was similarly the largest in KT2440 and the lowest in Pf0-1. The host alterations controlled by pCAR1 carriage are important for understanding the fate of the plasmid and its host, plasmid maintenance, expression of plasmid genes, the host cell physiology, and host survivability in the environment. The growth-dependent change of chromosomal RNA maps from exponential to early stationary phases of pCAR1-harboring KT2440 and non-pCAR1 harboring KT2440 were compared. The growth-dependent change of chromosomal RNA maps from exponential to early stationary phases of pCAR1-harboring PAO1 and non-pCAR1 harboring PAO1 were compared. The growth-dependent change of chromosomal RNA maps from exponential to early stationary phases of pCAR1-harboring Pf0-1 and non-pCAR1 harboring Pf0-1 were compared. The growth-dependent change of RNA maps from exponential to early stationary phases of plasmid pCAR1possessed by 3 kinds of hosts were compared.