Global gene expression of Ruegeria pomeroyi DSS-3 during ammonium-limited, ribose phosphate-, methylphosphonate-, or potassium phosphate-excess growth regimes or during potassium phosphate-limited, ammonium-excess regime
Ontology highlight
ABSTRACT: We used the previously designed oligonucleotide microarrays (BM-CM-
Project description:We used the previously designed oligonucleotide-based microarray (Burgmann et al. Environmental Microbiology 2007, 9: 2742-2755) to detect the transcripts of R. pomeroyi DSS-3 genes when the cells were cultured under steady-state carbon (glucose), nitrogen (ammonium), phosphorus (phosphate), or sulfur (sulfate) limitation. A total of 14 mRNA samples were hybridized to the arrays (three biological replicates from glucose, ammonium, phosphate, or sulfate limitation and one technical replicate each for ammonium or sulfate limitation)
Project description:To identify novel regulators of the Hippo pathway, we performed affinity purification-mass spectrometry (AP-MS) using Drosophila embryos overexpressing Yki-EGFP with a ubiquitous driver da-GAL4, as well as cultured S2 cells expressing Yki-SBP. We identified the core Hippo pathway components, multiple Hippo pathway regulators and functional groups, and several putative Yki interactors including Bonus (Bon). To identify additional cofactors that are recruited by Bon, we performed AP-MS using Bon-SBP expressed in Drosophila S2 cells. Further genetic tests revealed the involvement of Bon interactors, HDAC1, Su(var)2-10, and Hrb27C, in the Drosophila eye specification that is regulated by the Yki-Bon complex.
Project description:Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC. Microarray experiments were performed with two different custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary clear cell RCC tumors and 11 nontumor adjacent matched tissues were analyzed with 4k-probes microarrays. Oligoarrays with 44k-probes were used to interrogate 17 RCC samples (14 clear cell, 2 papillary, 1 chromophobe subtypes) split into four pools. Meta-analyses were performed by taking the genomic coordinates of the RCC-expressed lncRNAs, and cross-referencing them with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). An additional signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value M-bM-^IM-$0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 25% were cis correlated (r >|0.6|) with the expression of the mRNA in the same locus across three human tissues. Gene Ontology (GO) analysis of those loci pointed to M-bM-^@M-^Xregulation of biological processesM-bM-^@M-^Y as the main enriched category. A module map analysis of all expressed protein-coding genes in RCC that had a significant (r M-bM-^IM-%|0.8|) trans correlation with the 20% most abundant lncRNAs identified 35 relevant (p <0.05) GO sets. In addition, we determined that 60% of these lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands and histones methylation and acetylation. Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:Investigating the molecular basis and correlates of anxiety-related and depression-like behaviors, we generated a mouse model consisting of high (HAB) and low (LAB) anxiety-related behavior mice. We utilized the elevated plus-maze for testing the genetic predisposition to anxiety-related behavior and, consequently, used this as selection criterion for the inbreeding of our animals. In depression-related tests, HAB mice display a more passive, depression-like coping strategy than LAB mice, resembling clinical comorbidity of anxiety and depression as observed in psychiatric patients. Using a microarray approach, the hypothalamic paraventricular nucleus (PVN), the basolateral/lateral (BLA), the medial (MeA) and central amygdala (CeA), the nucleus accumbens (NAc), the cingulate cortex (Cg) and the supraoptic nucleus (SON) – centers of the central nervous anxiety and fear circuitries – were investigated and screened for differences between HAB and LAB mice. Analysis was performed from six animals per line (HAB and LAB, respectively) pooled per brain region in ten technical replicates, thereof five with a dye-swapped design giving a total of 70 array slides analyzed. The LAB mouse line is referred to as reference.
Project description:Acute phase reactants serum amyloid A-1, 3 and micro RNA-135b, -449a, and -1 are induced in lungs of mice exposed to subtoxic doses of nano-titanium dioxide particles by inhalation In the present study we investigate pulmonary mRNA and miRNA profiles of mice exposed to subtoxic dose of nano-titanium dioxide particles by inhalation. We show dramatic induction of acute phase reactants, chemoattractants, immune and host defence related genes. We also demonstrate for the first time changes in miRNA profiles in the lungs in response to nanoTiO2. Keywords: Toxicology, disease state analysis, biomarkers of health effects Female C57BL/6 mice were exposed to 40 mg nanoTiO2/m3 for one hour/day for 11 consecutive days and were sacrificed 5 days following the last exposure. Left lung lobes and liver were removed and flash frozen. Total RNA was isolated from a small random part of the frozen lung and liver and was hybridized against universal mouse reference RNA to Agilent Oligo DNA microarrays (Agilent Technologies) containing 44,000 transcripts. Microarrays were normalized using a global LOWESS approach and analyzed by MAANOVA 2.0 and SAM. Microarray results were validated by real time RT-PCR. Impact of alteration in expression of select genes was further validated by analysing their total protein levels in lung tissue homogenates.
Project description:The fraction of dissolved dimethylsulfoniopropionate (DMSPd) converted by marine bacterioplankton into the climate-active gas dimethylsulfide (DMS) varies widely in the ocean, with the factors that determine this value still largely unknown. One current hypothesis is that the ratio of DMS formation:DMSP demethylation is determined by DMSP availability, with 'availability' in both an absolute sense (i.e., concentration in seawater) and in a relative sense (i.e., proportionally to other labile organic S compounds) being proposed as the critical factor. We investigated these models during an experimentally-induced phytoplankton bloom using an environmental microarray targeting DMSP-related gene expression in the Roseobacter group, a taxon of marine bacteria known to play an important role in the surface ocean sulfur cycle. The array consisted of 1,578 probes to 431 genes, including those previously linked to DMSP degradation as well as core genes common in sequenced Roseobacter genomes. The prevailing pattern of Roseobacter gene expression showed depletion of DMSP-related transcripts during the peak of the bloom, despite the fact that absolute concentrations and flux of DMSP-related compounds were increasing. A likely interpretation is that DMSPd was assimilated by Roseobacter populations in proportion to its relative abundance in the organic matter pool (the “relative sense” hypothesis), and that it is not taken up in preference to other sources of labile organic sulfur or carbon produced during the bloom. The relative investment of the Roseobacter community in DMSP demethylation did not predict the fractional conversion of DMSP to DMS, however, suggesting a complex regulatory process that may involve multiple fates of DMSPd. DMSP-related gene expression in the Roseobacter group was investigated using an environmental microarray. Coastal seawater from the Gulf of Mexico was collected and dispensed into 20-L microcosms. Two replicate cubitainers were amended with nutrients (N and P) to stimulate phytoplankton bloom, while two untreated cubitainers served as controls. The microcosms were incubated at 27ºC in a temperature-controlled incubator on a 12 h light/dark cycle for total of 7 days. Ten RNA samples (Day 0: 2 conditions with 1 biological replicate each; Days 2 and 4: 2 conditions with 2 biological replicates each) were prepared for microarray hybridization. After total RNA extraction, rRNAs were removed and mRNA transcripts were amplified and labeled with Alexa Fluor 647. Two technical replicates were hybridized from each RNA sample. The microarray was designed based on selected Ruegeria pomeroyi DSS-3 genes and their orthologs in 12 other sequenced Roseobacter genomes. Probes were designed from the orthologs using the Hierarchical Probe Design (HPD) algorithm.
Project description:This SuperSeries is composed of the following subset Series: GSE24907: Lack of hepatic response of microRNA in mice following chronic benzo(a)pyrene exposure (gene expression) GSE24909: Lack of hepatic response of microRNA in mice following chronic benzo(a)pyrene exposure (miRNA) Refer to individual Series
Project description:Previously characterized ameloblast-lineage cells were used in this study to determine whether micromolar levels of fluoride could be directly affect these cells. Six samples altogether were analyzed in this study. Every two of them were from a same biological souce and subject to with or without the treatment of 10uM NaF (the only difference between the two samples.) The experiment was repeated 3 times.
Project description:DNA double-strand breaks (DSBs) initiate meiotic recombination. Past DSB-mapping studies have used rad50S or sae2? mutants, which are defective in break processing, to accumulate DSBs, and report large (= 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2? mutants. We therefore developed novel methods that detect DSBs using ssDNA enrichment and microarray hybridization, and that use background-based normalization to allow cross-comparison between array datasets, to map genome-wide the DSBs that accumulate in processing-capable, repair-defective dmc1î and dmc1î rad51î mutants. DSBs were observed at known hotspots, but also in most previously-identified “DSB-cold” regions, including near centromeres and telomeres. While about 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1? shows that most of these regions have significant DSB activity. Thus, DSBs are distributed much more uniformly than was previously believed. Southern-blot assays of DSBs in selected regions in dmc1?, rad50S and wild-type cells confirm these findings. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as the primary strand transfer activity genome-wide, and Spo11-induced lesions as initiating all meiotic recombination. Keywords: DSB mapping, ChIP-chip, single strand DNA , BND cellulose We use two different strategies to map the genome-wide distribution of meiotic DSBs in the yeast Saccharomyces cerevisiae. The first is a chromatin immunoprecipitation (ChIP) based approach that targets the Spo11p protein, which remains covalently attached to DSB ends in the rad50S mutant background. The second approach involves BND cellulose enrichment of the single strand DNA (ssDNA) recombination intermediate formed by end-resection at DSB sites following Spo11p removal. We use dmc1 and dmc1 rad51 mutants that accumulates meiotic single strand DNA intermediates