Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment
Ontology highlight
ABSTRACT: Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites. Measurement of genome replication time for various S. cerevisiae strains. For each strain two samples were analysed: a replicating sample (from S phase) and a non-replicating sample (from G2 phase).
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Conrad Nieduszynski
PROVIDER: E-GEOD-41982 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA