Circadian transcriptome of fast tibialis anterior (TA) and slow soleus (SOL) skeletal muscles from muscle-specific Bmal1 KO and control Cre- littermates
Ontology highlight
ABSTRACT: To investigate the role of the circadian clock gene Bmal1 in skeletal muscle, we compared the circadian transcriptomes of fast tibialis anterior (TA) and slow soleus (SOL) skeletal muscles from muscle-specific Bmal1 KO (mKO) and their control Cre- littermates (Ctrl). Keyword: Circadian Transcriptome, time course 72 samples were analyzed, comprised of 4 experimental groups (Ctrl SOL, mKO SOL, Ctrl TA, mKO TA), with 3 biological replicates for each time point sampled every 4 hours for 24 hours. SOL and TA muscles were collected from the same animals, as indicated by Source Animal ID data column
Project description:To investigate the role of the circadian clock gene Bmal1 in skeletal muscle, we compared the circadian transcriptomes of fast tibialis anterior (TA) and slow soleus (SOL) skeletal muscles from muscle-specific Bmal1 KO (mKO) and their control Cre- littermates (Ctrl). Keyword: Circadian Transcriptome, time course
Project description:The circadian clock controls a wide variety of metabolic and homeostatic processes in a number of tissues, including the kidney. However, the role of the renal circadian clocks remains largely unknown. To address this question we performed transcriptomic analysis in mice with inducible and conditional ablation of the circadian clock system in the renal tubular cells (Bmal1lox/lox/Pax8-rtTA/LC1 mice). Deep sequencing of the renal transcriptome revealed significant changes in the expression of genes related to metabolic pathways and organic anion transport. In parallel, kidneys from Bmal1lox/lox/Pax8-rtTA/LC1 mice exhibited a significant decrease in the NAD+/NADH ratio suggesting an increased anaerobic glycolysis and/or decreased mitochondrial function. In-depth analysis of two selected pathways revealed (i) a significant increase in plasma urea levels correlating with increased renal arginase 2 (Arg2) activity, hyperargininemia and increase of the kidney arginine content; (ii) a significantly increased plasma creatinine concentration and reduced capacity of the kidney to secrete anionic drugs (furosemide), paralleled by a ~80% decrease in the expression levels of organic anion transporter OAT3 (SLC22a8). Collectively, these results indicate that the renal circadian clocks control a variety of metabolic/homeostatic processes at both the intra-renal and systemic levels and are involved in drug disposition. Mice with a specific ablation of the Arntl gene encoding BMAL1 in the renal tubular cells were compared to wild-type littermate at ZT4 and ZT16 (ZT â Zeitgeber time units; ZT0 is the time of light on and ZT12 is the time of light off).
Project description:Using chromatin immuno-precipitation (ChIP) combined with deep sequencing (ChIP-seq) we obtained a time resolved and genome-wide map of BMAL1 binding in mouse liver, which allowed to identify over two thousand binding sites with peak binding narrowly centered around Zeitgeber time (ZT) 6. Annotation of BMAL1 targets confirms carbohydrate and lipid metabolism as the major output of the circadian clock in mouse liver. Moreover, transcription regulators are largely overrepresented, several of which also exhibit circadian activity. Genes of the core circadian oscillator stand out as strongly bound, often at promoter and distal sites. Genomic sequence analysis of the sites identified E- boxes and tandem E1-E2 consensus elements. Electromobility shift assays (EMSA) showed that E1-E2 sites are bound by a dimer of BMAL1/CLOCK heterodimers with a spacing-dependent cooperative interaction that was further validated in transactivation assays. BMAL1 target genes showed cyclic mRNA expression profiles with a phase distribution centered at ZT10. Importantly, sites with E1-E2 elements showed tighter phases both in binding and mRNA accumulation. Finally, comparing the temporal accumulation of precursor mRNA and mature mRNA helped distinguish direct BMAL1 targets from targets with more complex regulation, and showed how transcriptional and post-transcriptional regulation contribute differentially to circadian expression phase. Together, our analysis of a dynamic protein-DNA interactome uncovered how genes of the core circadian oscillator are wired together and drive phase-specific circadian output programs in a complex tissue. ChIP-Seq of BMAL1 in mouse liver during one circadian cycle at 4 hour time resolution presented in this Series (GSE26602). mRNA profiling data used in this study are already published (Kornmann et al, PLoS Biol 2007) and have been deposited on ArrayExpress repository (accession number: E-MEXP-842).
Project description:Gadd45a is a stress-induced protein that causes skeletal muscle atrophy. The goal of these studies was to determine the effects of Gadd45a overexpression on mRNA levels in mouse skeletal muscle. For additional details see Ebert et al, Stress-Induced Skeletal Muscle Gadd45a Expression Reprograms Myonuclei and Causes Muscle Atrophy. JBC epub. June 12, 2012. Tibialis anterior (TA) muscles from muscle-specfic ATF4 knockout mice (ATF4 mKO) were transfected with either 20 mg empty plasmid (pcDNA3) (left TA) or 20 mg pCMV-FLAG-Gadd45a (right TA) and harvested 7 days later. mRNA levels in Gadd45a-transfected muscles were normalized to levels in control transfected muscles.
Project description:Calorie restriction (CR) is a dietary intervention that extends lifespan and healthspan in a variety of organisms. CR improves mitochondrial energy production, fuel oxidation and reactive oxygen species scavenging in skeletal muscle and other tissues, and these processes are thought to be critical to the benefits of CR. PGC-1a is a transcriptional coactivator that regulates mitochondrial function and is induced by CR. Consequently, many of the mitochondrial and metabolic benefits of CR are attributed to increased PGC-1a activity. To test this model for the first time, we examined the metabolic and mitochondrial response to CR in mice lacking skeletal muscle PGC-1a (MKO). Surprisingly, MKO mice demonstrated a normal improvement in glucose homeostasis in response to CR, indicating that skeletal muscle PGC-1a is dispensable for the whole-body benefits of CR. In contrast, gene expression profiling and electron microscopy demonstrated that PGC-1a is required for the full CR-induced increases in mitochondrial gene expression and mitochondrial density in skeletal muscle. These results demonstrate that PGC-1a is a major regulator of the mitochondrial response to CR in skeletal muscle, but surprisingly show that neither PGC-1a nor mitochondrial biogenesis in skeletal muscle are required for the metabolic benefits of CR. Control (FLOX) and PGC-1a skeletal muscle specific knock out (MKO) mice were placed on a control diet [C] or a calorie restriction diet [CR] for 12 weeks. RNA was isolated from TA/EDL muscles for microarray analysis. The following numbers of mice were analyzed from each group: C FLOX: n = 6; C MKO: n = 7; CR FLOX: n = 6; CR MKO: n = 7. Mice were mixed C57/BL6 and 129 background.
Project description:For additional details see Ebert et al, Identification and Small Molecule Inhibition of an ATF4-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. Quadriceps femoris muscles were harvested from 22-month-old muscle-specfic ATF4 knockout (ATF4 mKO) mice and littermate controls. mRNA levels in ATF4 mKO muscles were normalized to levels in littermate control muscles.
Project description:Anopheles gambiae, the primary African malarial mosquito, exhibits numerous behaviors that are under diel and circadian control, including locomotor activity, swarming, mating, host seeking, eclosion, egg laying and sugar feeding. However, little has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is globally regulated by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of A. gambiae head and bodies under 12:12 light:dark cycle (LD) and constant dark (DD, free-running) conditions. Zeitgeber Time (ZT) with ZT12 defined as time of lights OFF under the light:dark cycle, and ZT0 defined as end of the dawn transition. Circadian Time (CT) with CT0 defined as subjective dawn, inferred from ZT0 of the previous light:dark cycle. Adult mated but non-blood fed female mosquito heads and bodies under 12:12 light:dark cycle (LD) and constant dark (DD) conditions were collected every 4 hr to generate 48 hr gene expression profiles, and samples were processed with Affymetrix full genome microarrays. Downstream analysis identified genes with ~24hr rhythmic expression profiles.
Project description:Recent evidence suggest that the circadian timing system plays an important role in the control of renal function and maintaining blood pressure. Here, we analyzed circadian rhythms of urinary excretion of sodium and potassium in wild-type mice and mice lacking circadian transcriptional activator clock. Analysis of urines collected at hourly intervals over a 24-hour period revealed dramatic changes in rhythms of sodium and potassium excretion in clock(-/-) mice. In parallel, significant differences in circadian pattern of plasma aldosterone levels, but not in the 24-hour mean aldosterone levels, were observed. Microarray-based profiling of renal transcriptomes demonstrated that clock(-/-) mice exhibit dysregulation in multiple mechanisms involved in maintaining sodium and potassium balance by the kidney. The most significant changes were detected in the expression levels of several key enzymes (Cyp4a14, Cyp4a12a and Cyp4a12b) required for the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a powerful regulator of renal sodium and potassium excretion, renal vascular tone and blood pressure. The 20-HETE levels measured in kidney microsomes of wild-type mice followed a circadian-like temporal pattern. In clock(-/-) mice, the acrophase of this rhythm was shifted by 8 hours and the 24-hour mean levels of 20-HETE were significantly decreased. These results demonstrate that circadian rhythms of urine electrolyte excretion are largely dependent on the circadian clock activity and indicate that circadian oscillations in renal 20-HETE content could be an important mechanism of blood pressure regulation. We examined the temporal profiles of gene expression in mouse whole kidney. Animals were sacrificed for microdissection every 4 hours, i.e. at ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20 (ZT M-bM-^@M-^S Zeitgeber (circadian) time, indicates time of light-on as ZT0 and time of light-off as ZT12). The microarray hybridization was performed in duplicates on pools of RNA composed of equivalent amounts of RNA prepared from teo or three animals at each ZT time-point.
Project description:Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e. distal convoluted tubule (DCT) and connecting tubule (CNT) and, the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, M-oM-^AM-!ENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function. Experiment Overall Design: We examined the temporal profiles of gene expression in mouse distal nephron segments and collecting ducts. The RNA was extracted from microdissected distal convoluted tubules and connecting tubules (DCT/CNT samples) or, cortical collecting ducts (CCD samples). Animals were sacrificed for microdissection every 4 hours, i.e. at ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20 (ZT M-bM-^@M-^S Zeitgeber (circadian) time, indicates time of light-on as ZT0 and time of light-off as ZT12). The microarray hybridization was performed in duplicates on two pools of RNA composed of equivalent amounts of RNA prepared from five animals at each ZT time-point.
Project description:The circadian clock in mammals temporally coordinates physiological and behavioural processes to anticipate daily rhythmic changes in their environment. Chronic disruption to circadian rhythms (e.g., through ageing or shift work) is thought to contribute to a multitude of diseases, including degeneration of the musculoskeletal system. The intervertebral disc (IVD) in the spine contains circadian clocks which control ~6% of the transcriptome in a rhythmic manner, including key genes involved in extracellular matrix (ECM) homeostasis. However, it remains largely unknown to what extent the local IVD molecular clock is required to drive rhythmic gene transcription and IVD physiology. In this work, we identified profound age-related changes of ECM microarchitecture and an endochondral ossification-like phenotype in the annulus fibrosus (AF) region of the IVD in the Col2a1-Bmal1 knockout mice. Reported here is the circadian time series RNA-Seq of the whole IVD in Bmal1 knockout mice.