ABSTRACT: Solid-pseudopapillary neoplasm of pancreas(SPN), ductal adenocarcinoma(PCA), neuroendocrine tumor(NET) and non-neoplastic pancreas. To investigate the specific gene expression of SPN compared to other types of pancreatic tumor, we analyzed large-scale gene expressioin analysis to identify the molecular signature that may affect SPN tumorigenesis. Differentially expressed genes were analyzed on SPNs, PCAs, NETs and Non-neoplastic tissues. Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with distinct clinicopathologic features. SPNs are characterized by mutations in exon 3 of CTNNB1. However, little is known about the gene and microRNA expression profiles of SPNs. Thus, we sought to characterize SPN-specific gene expression and identify the signaling pathways activated in these tumors. The mRNA expression profile of 14 SPNs, 6 pancreatic adenocarcinomas (PCAs), 6 pancreatic neuroendocrine tumors (NETs), and five non-neoplastic pancreatic tissues were analyzed.
Project description:Solid-pseudopapillary neoplasm of pancreas (SPN), ductal adenocarcinoma (PCA), neuroendocrine tumor (NET) and non-neoplastic pancreas. comparison with gene expression of tumors and non-tumors To investigate the specific microRNA expression of SPN compared to other types of pancreatic tumor, we analyzed large-scale microRNA expressioin analysis to identify the molecular signature that may affect SPN tumorigenesis with mRNA expression profiles. Differentially expressed microRNAs were analyzed on SPNs, PCAs, NETs and Non-neoplastic tissues.
Project description:Solid-pseudopapillary neoplasm of pancreas(SPN), ductal adenocarcinoma(PCA), neuroendocrine tumor(NET) and non-neoplastic pancreas. To investigate the specific gene expression of SPN compared to other types of pancreatic tumor, we analyzed large-scale gene expressioin analysis to identify the molecular signature that may affect SPN tumorigenesis. Differentially expressed genes were analyzed on SPNs, PCAs, NETs and Non-neoplastic tissues.
Project description:Solid-pseudopapillary neoplasm of pancreas (SPN), ductal adenocarcinoma (PCA), neuroendocrine tumor (NET) and non-neoplastic pancreas. comparison with gene expression of tumors and non-tumors
Project description:Solid pseudopapillary neoplasm (SPN) of pancreas is a rare pancreatic neoplasm with a low metastatic potential. Up to 10% of patients with localized disease at presentation will develop systemic metastases, usually in the peritoneum or the liver. Due to the rarity of SPNs and the overall excellent prognosis, reliable prognostic factors to predict malignant biological behavior remain undetermined. Therefore, we aimed to define clinical, histological, and microRNA patterns that are associated with metastatic disease. We conducted a retrospective single center study on all patients operated for SPN of pancreas between 1995 and 2018. Clinical and pathological data were collected, and expression patterns of 2578 human microRNAs were analyzed using microRNA array (Affimetrix 4.1) in normal pancreases (NPs), localized tumors (LTs), and metastatic tumors (MTs). The diagnosis of SPN was confirmed in 35 patients who included 28 females and 3 males, with a mean age of 33.8 ± 13.9 years. The only clinical factor associated with metastases was tumor size (mean tumor size 5.20 ± 3.78 in LT versus 8.13± 1.03 in MT, p < 0.012). Microscopic features of malignancy were not associated with metastases, nor were immunohistochemical stains, including the proliferative index KI67. Higher expressions of miR-184, miR-10a, and miR-887, and lower expressions of miR-375, miR-217, and miR-200c were observed in metastatic tissues on microarray, and validated by real-time polymerase chain reaction. Hierarchal clustering demonstrated that the microRNA expression pattern of MTs was significantly different from that of LTs. The only clinical factor associated with metastases of SPN of pancreas was tumor size. Histological features and immunohistological staining were not predictive of metastases. A panel of six microRNAs was differentially expressed in MTs, and these findings could potentially be used to predict tumor behavior. Validation of these results is needed in larger series.
Project description:Gastroentero-pancreatic neuroendocrine neoplasm(GEP-NEN) is consisted of neuroendocrine tumor and neuroendocrine carcinoma, which is a lethal, but under-investigated disease owing to its rarity. We established an organoid library of GEP-NEN and added their comprehensive molecular characterization.
Project description:The management of neuroendocrine tumors (NETs) is very variable, depending on many specific aspects, such as the type of tumor, spread and patient general health. Several advances have been made with the newly developed somatostatin analogues to cure this type of malignancies. Somatostain analogues such as octreotide have been used in clinic to treat patients with neuroendocrine tumors (NETs). However, the molecular mechanism leading either to successful therapy or acquired resistance to the analogues is still to large extent unclear. Patients develop drugs resistance during a long term treatment. Therefore, to identify the pivotal regulatory genes involved in the development of drug resistance is an actual challenge. We studied five human neuroendocrine tumor cell lines, CNDT2.5, KRJ1, QGP-1, NCI H720 and NCI H727. We also investigated a long-term treated CNDT2.5 by using octreotide. We performed gene expression profiling in all the human neuroendocrine cell lines. Keywords: Gene Expression profiling, treatment comparison We investigated 5 human neuroendocrine cell lines, CNDT2.5 and KRJ1, established from ileum NETs, QGP1 by a pancreatic NET, NCI H720 and NCI H727 from bronchopulmonary NETs. CNDT2.5 cell were constantly treated with 1M-BM-5M octreotide for 10 and 16 months. We isolated total RNA (Ambion, PARISM-bM-^DM-" Kit) from 5 WT cell lines and CNDT2.5 treated with octreotide (Santostatin, Novartis). Total RNA was hybridized onto the Affymetrix Human Gene 1.0 ST Array by Affymetrix Uppsala Platform, UU. SE (Uppsala, Sweden). We first wanted to verify whether the different cell lines may become reliable models to study neuroendocrine signaling pathways. The main objective of this project aimed at understanding the mechanisms by which octrotide (Sandostatin, Novartis) alter cellular growth and differentiation of CNDT2.5 cells. We therefore focused on intermediate (10 months) and long stimulation (16 months) events triggered by sandostatin, which lead variation of CNDT.2.5 cells gene expression to identify potential pivotal genes involved in the development of drug resistance in neuroendocrine cells.
Project description:The host antitumor immunity changes drastically during carcinogenesis. Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a precursor lesion of pancreatic cancer and progresses according to adenoma-carcinoma sequence. We found that the host antitumor immune reaction changes from an immune response to immune tolerance between intraductal papillary-mucinous adenoma (IPMA) and intraductal papillary-mucinous carcinoma (IPMC). In order to determine molecules affecting intraepithelial DC infiltration in IPMNs during multistep carcinogenesis, we examined the gene-expression profiles of entire transcripts of neoplastic cells at different stages. We collected normal and neoplastic epithelial cells from frozen tissue sections (normal main pancreatic duct, IPMA, IPMC, and invasive carcinoma originating in IPMN) by laser microdissection, extracted total RNA from them, and analyzed their gene expression profiles using Affymetrix microarrays.
Project description:Characterization of mRNA and microRNA expression profiles in solid-pseudopapillary neoplasm of pancreas, ductal adenocarcinoma and pancreatic neuroendocrine tumors
Project description:Expression data from pancreatic cancer cell lines and non-neoplastic pancreatic cell line HPDE To identify genes epigenetically silenced and regulated in pancreatic cancer We compared the gene expression profiles of 6 pancreatic cancer cell lines (panc215, A32-1, A38-5, panc2.5, panc2.8, and panc3.014), to the non-neoplastic pancreas cell line, HPDE. We also compared the baseline gene expression of the pancreatic cancer cell lines to expression patterns after treatment with 5-aza-dC alone, TSA alone, and to a combination of 5-aza-dC/TSA.