ABSTRACT: To facilitate the functional annotation of the pepper genome, analysis of miRNAs was performed for the sequenced data from five small RNA libraries described above, representing five different tissues. Starting with a set of 5,436 plant mature miRNA sequences available in miRBase, we annotated with high confidence 176 pepper miRNAs from 64 families, of which 30 families are computationally predicted to target TFs, suggesting important roles of these miRNA families in post-transcriptional gene regulation and transcription networks consistent with previous findings. To identify genomic regions generating small RNAs, we applied previously described analytical strategies to five small RNA libraries from different tissues. Developing roots, stems and mature leaves were collected from plants grown in soil in a green house at 22 °C with a 16 hr light cycle and harvested from plants at full-bloom stage. Mature plants were harvested for fully open flowers. Additional flowers were allowed to self-pollinate and fruit was harvested in the breaker stage (thirty days after pollination when the fruit was turning red). Total RNA for different tissues was isolated from the frozen root samples by using the Trizol Reagent (Invitrogen) according to manufacturer’s instructions, and libraries were constructed using the Small RNA Sample Prep Kit (Illumina, San Diego, CA) as previously described, then sequenced on an Illumina HiSeq2000 system.
Project description:To facilitate the functional annotation of the pepper genome, we generated 90.84 Gb of RNA-Seq data from 33 libraries representing all major tissue types and developmental stages of Zunla 1, as well as fruits from other accessions with significant phenotypic differences. Pepper ‘Zunla 1’ and other inbred lines were grown in a greenhouse as described in Table S1, with their different developmental stages Plants at full-bloom stage were harvested for roots, stems, and leaves as the same as the samples for phased small RNAs (see text S3.4.2 for details). Mature plants were harvested for unopened flower buds (buds) and fully open flowers (flowers). Additional flowers were allowed to self-pollinate and fruit was harvested at four pre-breaker stages (1-3cm, 3-4cm, 4-5cm fruit length, and mature green), the breaker stage (when the fruit was turning red) and three post-breaker stages (3, 5, and 7 days after breaker). These samples will respectively be referred to as Root, Stem, Leaf, Bud, Flower, F-Dev-1, F-Dev-2, F-Dev-3, F-Dev-4, F-Dev-5, F-Dev-6, F-Dev-7, F-Dev-8, and F-Dev-9. Similar roots, stems, leaves, immature fruit and red fruit were harvested from other inbred lines from domesticated Capsicum species. Meanwhile, chiltepin plants were grown under long days at controlled temperature and RNA was extracted from a mix of leaves from four stages (seedling, early blooming, full bloom, and fruit breaker phases), a mix of flowers from unopened flower buds (buds) and fully open flowers (flowers), and fruit at breaker and breaker plus five days respectively. All tissues were frozen in liquid nitrogen and then stored at -80℃. Total RNA was isolated from different samples by using the Trizol Reagent (Invitrogen) according to manufacturer’s instructions. Strand-specific RNA-Seq library preparations were performed as previously described (39) with 12 independently bar-coded samples sequenced on one lane of an Illumina HiSeq2000 system. The 200 bp paired-end libraries were sequenced using Illumina HiSeq 2000 (90 bp PE).
Project description:To facilitate the functional annotation of the pepper genome, analysis of miRNAs was performed for the sequenced data from five small RNA libraries described above, representing five different tissues. Starting with a set of 5,436 plant mature miRNA sequences available in miRBase, we annotated with high confidence 176 pepper miRNAs from 64 families, of which 30 families are computationally predicted to target TFs, suggesting important roles of these miRNA families in post-transcriptional gene regulation and transcription networks consistent with previous findings.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from different Capsicum annuum tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Capsicum annuum. Total RNA was isolated using the TriReagent (Molecular Research Center) for leaves and flowers and the Plant RNA Purification Reagent (Invitrogen) for fruit, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Barbara Baker for providing the plant material, as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:In this study, we used the illumina high throughput sequencing approach (Sequencing-By-Synthesis, or SBS) to develop the sequence resource of black pepper. To identify micro RNAs functioning in stress response of the black pepper plant, small RNA libraries were prepared from the leaf and root of Phytophthora capsici infected plants, leaves from drought stressed and control plants.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Citrus sinensis tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Citrus sinensis. Total RNA was isolated using the TriReagent (Molecular Research Center) for leaves and flowers and the Guanidinium-free for fruits, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Erik Mirkov for providing the plant material, as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Solanum licopersicum tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Solanum licopersicum. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Harry Klee for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Musa acuminata tissues (including leaves, male flowers and immature fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, male flowers and immature fruit of Musa acuminata. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Nicolas Roux for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Persea americana tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Persea americana. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen), and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Doug Soltis for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:To identify miRNAs involved in senescence of strawberry fruit, two independent small RNA libraries and one degradome library from strawberry fruits stored at 20 °C for 0 and 24 h were constructed. A total of 18,759,735 and 20,293,492 mappable small RNA sequences were generated in the two small RNA libraries, respectively, and 88 known and 1224 new candidate miRNAs were obtained. Among them, 94 miRNAs were up-regulated and 64 were down-regulated in the senescence of strawberry fruit. Through degradome sequencing, 103 targets cleaved by 19 known miRNAs families and 55 new candidate miRNAs were identified. 14 targets, including NAC transcription factor, Auxin response factors (ARF) and Myb transcription factors, cleaved by 6 known miRNA families and 6 predicted candidates, were found to be involved in regulating fruit senescence.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Nuphar advena tissues (including leaves, flowers and roots). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Nuphar advena. Total RNA was isolated using the Plant RNA Purification Reagent (Invitrogen) for leaves and the Guanidinium-free for flowers and roots, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Claude dePamphilis for providing the plant material as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.